PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1991 April; 173(8): 2704–2706.
PMCID: PMC207840

Acetate catabolism in the dissimilatory iron-reducing isolate GS-15.

Abstract

Acetate-grown GS-15 whole-cell suspensions were disrupted with detergent and assayed for enzymes associated with acetate catabolism. Carbon monoxide dehydrogenase and formate dehydrogenase were not observed in GS-15. Catabolic levels of acetokinase and phosphotransacetylase were observed. Enzyme activities of the citric acid cycle, i.e., isocitrate dehydrogenase, 2-oxoglutarate sythase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were observed.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (685K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aceti DJ, Ferry JG. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis. J Biol Chem. 1988 Oct 25;263(30):15444–15448. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Champine JE, Uffen RL. Membrane topography of anaerobic carbon monoxide oxidation in Rhodocyclus gelatinosus. J Bacteriol. 1987 Oct;169(10):4784–4789. [PMC free article] [PubMed]
  • Jetten MS, Stams AJ, Zehnder AJ. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J Bacteriol. 1989 Oct;171(10):5430–5435. [PMC free article] [PubMed]
  • Kenealy W, Zeikus JG. Influence of corrinoid antagonists on methanogen metabolism. J Bacteriol. 1981 Apr;146(1):133–140. [PMC free article] [PubMed]
  • Lovley DR, Ferry JG. Production and Consumption of H(2) during Growth of Methanosarcina spp. on Acetate. Appl Environ Microbiol. 1985 Jan;49(1):247–249. [PMC free article] [PubMed]
  • Lovley DR, Lonergan DJ. Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl Environ Microbiol. 1990 Jun;56(6):1858–1864. [PMC free article] [PubMed]
  • Lovley DR, Phillips EJ. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river. Appl Environ Microbiol. 1986 Oct;52(4):751–757. [PMC free article] [PubMed]
  • Lovley DR, Phillips EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol. 1986 Apr;51(4):683–689. [PMC free article] [PubMed]
  • Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. [PMC free article] [PubMed]
  • Lovley DR, Phillips EJ. Requirement for a Microbial Consortium To Completely Oxidize Glucose in Fe(III)-Reducing Sediments. Appl Environ Microbiol. 1989 Dec;55(12):3234–3236. [PMC free article] [PubMed]
  • Schink B, Lupton FS, Zeikus JG. Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments. Appl Environ Microbiol. 1983 May;45(5):1491–1500. [PMC free article] [PubMed]
  • Sørensen J. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol. 1982 Feb;43(2):319–324. [PMC free article] [PubMed]
  • Sowers KR, Baron SF, Ferry JG. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments. Appl Environ Microbiol. 1984 May;47(5):971–978. [PMC free article] [PubMed]
  • Thauer RK. Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem. 1988 Oct 1;176(3):497–508. [PubMed]
  • Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. [PMC free article] [PubMed]
  • Thompson DK, Chen JS. Purification and properties of an acetoacetyl coenzyme A-reacting phosphotransbutyrylase from Clostridium beijerinckii ("Clostridium butylicum") NRRL B593. Appl Environ Microbiol. 1990 Mar;56(3):607–613. [PMC free article] [PubMed]
  • Uffen RL. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system. J Bacteriol. 1983 Sep;155(3):956–965. [PMC free article] [PubMed]
  • Wakim BT, Uffen RL. Membrane association of the carbon monoxide oxidation system in Rhodopseudomonas gelatinosa. J Bacteriol. 1983 Jan;153(1):571–573. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)