PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. Nov 1993; 175(22): 7348–7355.
PMCID: PMC206879
Regulation of the Bacillus subtilis acetate kinase gene by CcpA.
F J Grundy, D A Waters, S H Allen, and T M Henkin
Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208.
Abstract
The Bacillus subtilis gene encoding acetate kinase was identified on the basis of sequence similarity to the Escherichia coli ackA gene and to a second E. coli gene closely related to ackA. Insertional inactivation of this region of the B. subtilis chromosome resulted in the disappearance of acetate kinase enzyme activity in cell extracts. The ackA gene was mapped to a site close to the ccpA gene, at 263 degrees. The transcriptional start site for B. subtilis ackA was located 90 bp upstream from the start of the coding region, and expression was increased by growth in the presence of excess glucose. Growth of the AckA- mutant was inhibited by glucose, suggesting that acetate kinase is important for excretion of excess carbohydrate. The stimulation of ackA expression by glucose was blocked in a CcpA- mutant, indicating that CcpA, which is required for glucose repression of certain carbon source utilization genes, including amyE, may also be involved in activation of carbon excretion pathways. Two sequences resembling the amyO operator site were identified upstream of the ackA promoter; removal of this region resulted in loss of glucose activation of ackA expression.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page.
Images in this article
Click on the image to see a larger version.
Articles from Journal of Bacteriology are provided here courtesy of
American Society for Microbiology (ASM)