Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1993 October; 175(19): 6169–6178.
PMCID: PMC206711

vsrB, a regulator of virulence genes of Pseudomonas solanacearum, is homologous to sensors of the two-component regulator family.


Pseudomonas solanacearum, an important wilt pathogen of many plants, produces several extracellular proteins (EXPs) and extracellular polysaccharides (EPSs) that contribute to its virulence. Using TnphoA mutagenesis, we discovered a new gene, vsrB, that when inactivated causes a major reduction in the virulence and production of an EPS. Analysis of eps::lacZ reporters showed that vsrB is required for maximal expression (transcription) of eps, whose products are required for production of EPS I, a major virulence determinant. Analysis of EXPs in culture supernatants revealed that inactivation of vsrB also causes reduced production of two major EXPs, with molecular masses of 28 and 97 kDa, and a simultaneous 15-fold increase in levels of another EXP, PglA endopolygalacturonase. The vsrB gene was cloned from a P. solanacearum genomic library by complementation of the nonmucoid phenotype of the vsrB::TnphoA mutant and then subcloned on a 2.4-kb DNA fragment. TnphoA fusion analysis and subcellular localization of the vsrB gene product in Escherichia coli maxicells suggest that it is a ca. 60-kDa transmembrane protein. The nucleotide sequence of the 2.4-kb DNA fragment was determined, and a 638-amino-acid open reading frame was found for VsrB. A search of the GenBank data base found that the central part of VsrB has homology with the histidine kinase domain of sensors in the two-component regulator family, while the C terminus has homology with the phosphate receiver domain of response regulators in the same family. Genetic analysis suggests that the receiver domain is not required for vsrB function.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page.

Images in this article

Click on the image to see a larger version.

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)