PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1992 September; 174(17): 5639–5646.
PMCID: PMC206510

Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis.

Abstract

Streptococcus mutans GS5 expresses three glucosyltransferases (GTFs): GTF-I and GTF-SI, which synthesize water-insoluble glucans in a primer-independent manner, and GTF-S, which is responsible for the formation of primer-dependent soluble glucan. The amino acid sequences of the GTF-I and GTF-S enzymes exhibit approximately 50% sequence identity. Various hybrid genes were constructed from the structural genes for the enzymes, and their products were analyzed. Three different approaches were used to construct the hybrid enzymes: (i) ligation of DNA fragments containing compatible endonuclease restriction sites of the two genes at homologous positions; (ii) in vivo recombination between the homologous regions of each gene; and (iii) random fusion of DNA fragments from each gene generated following exonuclease III digestion of tandemly arranged fragments corresponding to the two functional domains of each enzyme. Hybrid GTFs composed of the sucrose-binding domain of one enzyme (GTF-I or GTF-S) with the glucan-binding domain of the other synthesized insoluble glucan exclusively in the absence of primer dextran. Insoluble glucan synthesis by some, but not all, of the GTF-S:GTF-I chimeric enzymes was stimulated by primer dextran T10 addition. In addition, glucan binding by the former but not latter group of hybrid GTFs was demonstrated. These results suggest that the glucan-binding domain alone does not solely determine primer dependence or independence or the structure of the resulting glucan product, although this carboxyl-terminal domain containing direct repeating units does appear to play a significant role in primer dependence.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abo H, Matsumura T, Kodama T, Ohta H, Fukui K, Kato K, Kagawa H. Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase). J Bacteriol. 1991 Feb;173(3):989–996. [PMC free article] [PubMed]
  • Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu HK. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 1986 Sep;53(3):587–594. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. [PMC free article] [PubMed]
  • Deich RA, Metcalf BJ, Finn CW, Farley JE, Green BA. Cloning of genes encoding a 15,000-dalton peptidoglycan-associated outer membrane lipoprotein and an antigenically related 15,000-dalton protein from Haemophilus influenzae. J Bacteriol. 1988 Feb;170(2):489–498. [PMC free article] [PubMed]
  • Ferretti JJ, Gilpin ML, Russell RR. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol. 1987 Sep;169(9):4271–4278. [PMC free article] [PubMed]
  • Giffard PM, Simpson CL, Milward CP, Jacques NA. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. J Gen Microbiol. 1991 Nov;137(11):2577–2593. [PubMed]
  • Gilmore KS, Russell RR, Ferretti JJ. Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun. 1990 Aug;58(8):2452–2458. [PMC free article] [PubMed]
  • Gilpin ML, Russell RR, Morrissey P. Cloning and expression of two Streptococcus mutans glucosyltransferases in Escherichia coli K-12. Infect Immun. 1985 Aug;49(2):414–416. [PMC free article] [PubMed]
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun. 1988 Aug;56(8):1999–2005. [PMC free article] [PubMed]
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun. 1989 Jul;57(7):2079–2085. [PMC free article] [PubMed]
  • Honda O, Kato C, Kuramitsu HK. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol. 1990 Oct;136(10):2099–2105. [PubMed]
  • Jones DH, Howard BH. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. Biotechniques. 1991 Jan;10(1):62–66. [PubMed]
  • Kato C, Kuramitsu HK. Carboxyl-terminal deletion analysis of the Streptococcus mutans glucosyltransferase-I enzyme. FEMS Microbiol Lett. 1990 Nov;60(3):299–302. [PubMed]
  • Kuramitsu HK. Characterization of extracellular glucosyltransferase activity of Steptococcus mutans. Infect Immun. 1975 Oct;12(4):738–749. [PMC free article] [PubMed]
  • Kuramitsu H, Ingersoll L. Immunological relationships between glucosyltransferases from Streptococcus mutans serotypes. Infect Immun. 1976 Sep;14(3):636–644. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. [PMC free article] [PubMed]
  • Nogami T, Mizuno T, Mizushima S. Construction of a series of ompF-ompC chimeric genes by in vivo homologous recombination in Escherichia coli and characterization of the translational products. J Bacteriol. 1985 Nov;164(2):797–801. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Schneider E, Walter C. A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium. Mol Microbiol. 1991 Jun;5(6):1375–1383. [PubMed]
  • Shiroza T, Ueda S, Kuramitsu HK. Sequence analysis of the gtfB gene from Streptococcus mutans. J Bacteriol. 1987 Sep;169(9):4263–4270. [PMC free article] [PubMed]
  • Short JM, Fernandez JM, Sorge JA, Huse WD. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. [PMC free article] [PubMed]
  • Sung WL, Zahab DM. Site-specific recombination directed by single-stranded crossover linkers: specific deletion of the amino-terminal region of the beta-galactosidase gene in pUC plasmids. DNA. 1987 Aug;6(4):373–379. [PubMed]
  • Tommassen J, van der Ley P, van Zeijl M, Agterberg M. Localization of functional domains in E. coli K-12 outer membrane porins. EMBO J. 1985 Jun;4(6):1583–1587. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PubMed]
  • Ueda S, Shiroza T, Kuramitsu HK. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene. 1988 Sep 15;69(1):101–109. [PubMed]
  • Vieira J, Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. [PubMed]
  • Weber H, Weissmann C. Formation of genes coding for hybrid proteins by recombination between related, cloned genes in E. coli. Nucleic Acids Res. 1983 Aug 25;11(16):5661–5669. [PMC free article] [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)