Search tips
Search criteria 


Logo of molmedLink to Publisher's site
Mol Med. 2002 May; 8(5): 251–262.
PMCID: PMC2039992

The role of salt bridge formation in glucagon: an experimental and theoretical study of glucagon analogs and peptide fragments of glucagon.


BACKGROUND: Glucagon is a 29-residue peptide produced in the alpha cells of the pancreas that interacts with hepatic receptors to stimulate glucose production and release, via a cAMP-mediated pathway. Type 2 diabetes patients may have an excess of glucagon and, as such, glucagon antagonists might serve as diabetes drugs. The antagonists that bind to the glucagon receptor but do not exhibit activity could be analogs of glucagon. The presence of salt bridges between some residues of glucagons (such as aspartic acid) and others (such as lysine) might influence both the binding to the receptor and the activity. MATERIALS AND METHODS: Experimental-The solid phase method with 4-methylbenzilhydrilamine resin (p-MBHA resin) was used for the synthesis of glucagon analogs. Rat liver membranes were prepared from male Sprague-Dawley rats by the Neville procedure. The receptor binding essay was performed in 1% BSA, 1 mM dithiothreitol, 25 mM Tris-HCl buffer, pH 7.2. Adenyl cyclase activity was measured in an assay medium containing 1% serum albumin, 25 mM MgCl2, 2 mM dithiothreitol, 0.025 mM GTP, 5 mM ATP, 0.9 mM theophylline, 17.2 mM creatine phosphate, and 1 mg/ml creatine phosphokinase. Theoretical-Quantum chemical calculations using the Titan program with the 6-31G* basis set were performed to calculate the binding energies of salt bridges between aspartic or glutamic acids and lysine. The relative stability of cyclic conformations of glucagon segments versus the extended segments was determined. RESULTS: It was found that the cyclic Glu9-Lys12 amide compound displayed a 20-fold decrease in binding affinity. DesHis1 cyclic compounds Glu20-Lys24 amide and DesHis1Glu9 Glu20-Lys24 amide behave as glucagon antagonists. The calculations show that cyclic conformations of tetrapeptidic and pentapeptidic segments of glucagon are more stable than the extended species. CONCLUSIONS: The biological data and the theoretical calculations show that an intramolecular salt bridge might impart stability to some glucagon antagonists and, when situated at the C-terminus of glucagon, might facilitate induction of an alpha-helix upon initial hormone association with the membrane bilayer. These findings might be a useful tool for the design of new glucagon antagonists.

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ