PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molmedLink to Publisher's site
 
Mol Med. 2002 April; 8(4): 185–199.
PMCID: PMC2039984

Anti-tumor efficacy of a novel antisense anti-MDM2 mixed-backbone oligonucleotide in human colon cancer models: p53-dependent and p53-independent mechanisms.

Abstract

BACKGROUND: The MDM2 oncogene is amplified or overexpressed in many human cancers and MDM2 levels are associated with poor prognosis. MDM2 not only serves as a negative regulator of p53 but also has p53-independent activities. This study investigates the functions of the MDM2 oncogene in colon cancer growth and the potential value of MDM2 as a drug target for cancer therapy, by inhibiting MDM2 expression with an antisense anti-human-MDM2 oligonucleotide. MATERIALS AND METHODS: The selected antisense mixed-backbone oligonucleotide was evaluated for its in vitro and in vivo antitumor activity in human colon cancer models: LS174T cell line containing wild-type p53 and DLD-1 cell line containing mutant p53. The levels of MDM2, p53 and p21 proteins were quantified by Western blot analysis. RESULTS: In vitro antitumor activity was found in both cell lines, resulting from specific inhibition of MDM2 expression. In vivo antitumor activity of the oligonucleotide occurred in a dose-dependent manner in both models and synergistically or additive therapeutic effects of MDM2 inhibition and the cancer chemotherapeutic agents 10-hydroxycamptothecin and 5-fluorouracil were also observed. CONCLUSIONS: These results suggest that MDM2 have a role in tumor growth through both p53-dependent and p53- independent mechanisms. We speculate that MDM2 inhibitors have a broad spectrum of antitumor activities in human cancers regardless of p53 status. This study should provide a basis for future development of anti-MDM2 antisense oligonucleotides as cancer therapeutic agents used alone or in combination with conventional chemotherapeutics.


Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ