Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1993 March; 175(6): 1656–1664.
PMCID: PMC203959

A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.


Specific induction of the copper resistance operon (cop) promoter from Pseudomonas syringae was measured by beta-galactosidase production from a cop promoter-lacZ fusion. Induction of the cop promoter in P. syringae pv. syringae required trans-acting factors from copper resistance plasmid pPT23D, from which cop was originally cloned. Tn5 mutagenesis of pPT23D was used to localize two complementation groups immediately downstream from copABCD. Cloning and sequencing of the DNA in this region revealed two genes, copR and copS, expressed in the same orientation as the cop operon but from a separate constitutive promoter. The amino acid sequence deduced from these genes showed distinct similarities to known two-component regulatory systems, including PhoB-PhoR and OmpR-EnvZ. In addition, CopR showed strong similarity to copper resistance activator protein PcoR from Escherichia coli. Functional chromosomal homologs to copRS activated the cop promoter, in a copper-inducible manner, in copper-resistant or -sensitive strains of P. syringae pv. tomato and other Pseudomonas species. This implies that copper-inducible gene regulation is associated with a common chromosomally encoded function, as well as plasmid-borne copper resistance, in Pseudomonas spp.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bender CL, Cooksey DA. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol. 1986 Feb;165(2):534–541. [PMC free article] [PubMed]
  • Bender CL, Cooksey DA. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol. 1987 Feb;169(2):470–474. [PMC free article] [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Brown NL, Rouch DA, Lee BT. Copper resistance determinants in bacteria. Plasmid. 1992 Jan;27(1):41–51. [PubMed]
  • Cha JS, Cooksey DA. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8915–8919. [PubMed]
  • Comeau DE, Ikenaka K, Tsung KL, Inouye M. Primary characterization of the protein products of the Escherichia coli ompB locus: structure and regulation of synthesis of the OmpR and EnvZ proteins. J Bacteriol. 1985 Nov;164(2):578–584. [PMC free article] [PubMed]
  • Cooksey DA. Characterization of a Copper Resistance Plasmid Conserved in Copper-Resistant Strains of Pseudomonas syringae pv. tomato. Appl Environ Microbiol. 1987 Feb;53(2):454–456. [PMC free article] [PubMed]
  • Cooksey DA. Copper uptake and resistance in bacteria. Mol Microbiol. 1993 Jan;7(1):1–5. [PubMed]
  • Cooksey DA, Azad HR, Cha JS, Lim CK. Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol. 1990 Feb;56(2):431–435. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. [PubMed]
  • Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol. 1989 Dec 5;210(3):551–559. [PubMed]
  • Makino K, Shinagawa H, Amemura M, Kimura S, Nakata A, Ishihama A. Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol. 1988 Sep 5;203(1):85–95. [PubMed]
  • Makino K, Shinagawa H, Amemura M, Nakata A. Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J Mol Biol. 1986 Jul 5;190(1):37–44. [PubMed]
  • Makino K, Shinagawa H, Amemura M, Nakata A. Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J Mol Biol. 1986 Dec 5;192(3):549–556. [PubMed]
  • Makino K, Shinagawa H, Nakata A. Regulation of the phosphate regulon of Escherichia coli K-12: regulation and role of the regulatory gene phoR. J Mol Biol. 1985 Jul 20;184(2):231–240. [PubMed]
  • Mellano MA, Cooksey DA. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol. 1988 Jun;170(6):2879–2883. [PMC free article] [PubMed]
  • Mellano MA, Cooksey DA. Induction of the copper resistance operon from Pseudomonas syringae. J Bacteriol. 1988 Sep;170(9):4399–4401. [PMC free article] [PubMed]
  • Miller JF, Mekalanos JJ, Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science. 1989 Feb 17;243(4893):916–922. [PubMed]
  • Ouzounis C, Sander C. A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins. FEBS Lett. 1991 Feb 11;279(1):73–78. [PubMed]
  • Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. [PubMed]
  • Rogers SD, Bhave MR, Mercer JF, Camakaris J, Lee BT. Cloning and characterization of cutE, a gene involved in copper transport in Escherichia coli. J Bacteriol. 1991 Nov;173(21):6742–6748. [PMC free article] [PubMed]
  • Rouch D, Camakaris J, Lee BT, Luke RK. Inducible plasmid-mediated copper resistance in Escherichia coli. J Gen Microbiol. 1985 Apr;131(4):939–943. [PubMed]
  • Selvaraj G, Iyer VN. Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol. 1983 Dec;156(3):1292–1300. [PMC free article] [PubMed]
  • Silver S, Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev. 1992 Mar;56(1):195–228. [PMC free article] [PubMed]
  • Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. [PMC free article] [PubMed]
  • Trevors JT. Copper resistance in bacteria. Microbiol Sci. 1987 Jan;4(1):29–31. [PubMed]
  • Tseng HC, Chen CW. A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene. Mol Microbiol. 1991 May;5(5):1187–1196. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]
  • Zhou C, Yang Y, Jong AY. Mini-prep in ten minutes. Biotechniques. 1990 Feb;8(2):172–173. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)