Search tips
Search criteria 


Logo of procrsmedFormerly medchtJournal of the Royal Society of MedicineProceedings of the Royal Society of Medicine
Proc R Soc Med. 1941 November; 35(1): 1–10.
PMCID: PMC1998199

Interactions of Fat and Carbohydrate Metabolism—New Aspects and Therapies

(Section of Therapeutics and Pharmacology)


NO one has so far produced anything approaching a clear picture of either fat or carbohydrate metabolism and the interactions of the two are still more involved and elusive although they clearly exist. Plants and animals build up reserves of fat from carbohydrate, but the reverse process (fat into carbohydrate), proved in plant seeds, is still unproven in animals, although theoretically possible.

In normal human metabolism fat-carbohydrate interactions are almost hidden. The disturbances shown in the metabolism of a diabetic seem to give us the clearest indications of these interactions. Either carbohydrate or fat can be used as the main source of body fuel, but their metabolic course is very different, both as regards chemistry and function. It is only whep carbohydrate is not available, either in starvation or severe diabetes, that fat provides the fuel of the body; this contrast is also manifest in the blood and internal organs, especially the liver. Under the commonest normal conditions of diet carbohydrate is predominantly and preferentially used for metabolism. The liver is rich in glycogen, poor in fat; the blood fat is minimal and ketone bodies, although perhaps present in small amount in the blood at most times, are absent on common tests. As soon as carbohydrate is insufficiently available for the needs of metabolism, depot fat flows to the liver and is there catabolized to ketone bodies which recent proof has shown to be burned peripherally in the muscles independent of carbohydrate metabolism. This is a normal process, harmful only in diabetes, and especially harmful when it occurs suddenly, e.g. when insulin is cut off from a fat diabetic dog or human patient. A diabetic supports with ease a prolonged severe ketosis but suffers from one of sudden onset, although of milder severity. Insulin in the diabetic and sugar in the starved switches metabolism from fat to carbohydrate usage very quickly and ketonuria usually disappears in three to six hours.

“Diabetic obesity” is very common and is often seen in the earliest stages and again after insulin treatment. It seems probable that hyperglycæmia causes this obesity and this has been clearly established by observations on an unusual case of lipæmia, diabetes and lipodystrophy.

Lipæcmia may occur in two opposite phases of metabolism, one anabolic—when fat is on its way to storage, the other catabolic—when it is flowing from stores to the liver. The latter is the usual condition obvious in disease.

Work has also been done which suggests that other lipotropic factors—choline, lipocaic, &c., exert an influence on carbohydrate-fat balance, more specifically the glycogen-fat balance in the liver.

In America attention has been drawn to the frequent and persistenzt occurrence of fatty enlargement of the liver in diabetic children. The author has seen many diabetic children (usually in a state of chronic ketosis) with enlarged livers, but such enlargement has rapidly disappeared with better management of the diabetes. Only two out of some 500 diabetic children have clearly shown the unmistakable syndrome of “hepatomegalic dwarfism ”. In these two cases choline and lipocaic were given over prolonged periods without any effect: the liver, however, of one of these cases has since become normal by the addition of zinc protamine insulin.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page.

Articles from Proceedings of the Royal Society of Medicine are provided here courtesy of Royal Society of Medicine Press