PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1994 December; 176(24): 7638–7645.
PMCID: PMC197221

Induction of the Escherichia coli aidB gene under oxygen-limiting conditions requires a functional rpoS (katF) gene.

Abstract

The Escherichia coli aidB gene is regulated by two different mechanisms, an ada-dependent pathway triggered by methyl damage to DNA and an ada-independent pathway triggered when cells are grown without aeration. In this report we describe our search for mutations affecting the ada-independent aidB induction pathway. The mutant strain identified carries two mutations affecting aidB expression. These mutations are named abrB (aidB regulator) and abrD. The abrB mutation is presently poorly characterized because of instability of the phenotype it imparts. The second mutation, abrD1, reduces the expression of aidB observed when aeration is ceased and oxygen becomes limiting. Genetic and phenotypic analysis of the abrD1 mutation demonstrates that it is an allele of rpoS. Thus, aidB is a member of the family of genes that are transcribed by a sigma S-directed RNA polymerase holoenzyme. Examination of aidB expression in an rpoS insertion mutant strain indicates that both rpoS13::Tn10 and abrD1 mutations reduce aidB expression under oxygen-limiting conditions that prevail in unaerated cultures, reduce aidB induction by acetate at a low pH, but have little or no effect on the ada-dependent alkylation induction of aidB.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aldea M, Garrido T, Hernández-Chico C, Vicente M, Kushner SR. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J. 1989 Dec 1;8(12):3923–3931. [PubMed]
  • Bohannon DE, Connell N, Keener J, Tormo A, Espinosa-Urgel M, Zambrano MM, Kolter R. Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol. 1991 Jul;173(14):4482–4492. [PMC free article] [PubMed]
  • Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J, Harwood J, Guiney DG. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11978–11982. [PubMed]
  • Foster PL. Directed mutation: between unicorns and goats. J Bacteriol. 1992 Mar;174(6):1711–1716. [PMC free article] [PubMed]
  • Guzman LM, Barondess JJ, Beckwith J. FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J Bacteriol. 1992 Dec;174(23):7716–7728. [PMC free article] [PubMed]
  • Hall BG. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. [PubMed]
  • Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell. 1993 Jan 29;72(2):165–168. [PubMed]
  • Ikeda Y, Dabrowski C, Tanaka K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. J Biol Chem. 1983 Jan 25;258(2):1066–1076. [PubMed]
  • Ikeda Y, Tanaka K. Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. J Biol Chem. 1983 Jan 25;258(2):1077–1085. [PubMed]
  • Ivanova A, Renshaw M, Guntaka RV, Eisenstark A. DNA base sequence variability in katF (putative sigma factor) gene of Escherichia coli. Nucleic Acids Res. 1992 Oct 25;20(20):5479–5480. [PMC free article] [PubMed]
  • Kaasen I, Falkenberg P, Styrvold OB, Strøm AR. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR) J Bacteriol. 1992 Feb;174(3):889–898. [PMC free article] [PubMed]
  • Landini P, Hajec LI, Volkert MR. Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J Bacteriol. 1994 Nov;176(21):6583–6589. [PMC free article] [PubMed]
  • Lange R, Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol. 1991 Jan;5(1):49–59. [PubMed]
  • Lemotte PK, Walker GC. Induction and autoregulation of ada, a positively acting element regulating the response of Escherichia coli K-12 to methylating agents. J Bacteriol. 1985 Mar;161(3):888–895. [PMC free article] [PubMed]
  • Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. [PubMed]
  • Loewen PC, Triggs BL. Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli. J Bacteriol. 1984 Nov;160(2):668–675. [PMC free article] [PubMed]
  • Loewen PC, von Ossowski I, Switala J, Mulvey MR. KatF (sigma S) synthesis in Escherichia coli is subject to posttranscriptional regulation. J Bacteriol. 1993 Apr;175(7):2150–2153. [PMC free article] [PubMed]
  • Matijasević Z, Hajec LI, Volkert MR. Anaerobic induction of the alkylation-inducible Escherichia coli aidB gene involves genes of the cysteine biosynthetic pathway. J Bacteriol. 1992 Mar;174(6):2043–2046. [PMC free article] [PubMed]
  • McCann MP, Fraley CD, Matin A. The putative sigma factor KatF is regulated posttranscriptionally during carbon starvation. J Bacteriol. 1993 Apr;175(7):2143–2149. [PMC free article] [PubMed]
  • Mulvey MR, Loewen PC. Nucleotide sequence of katF of Escherichia coli suggests KatF protein is a novel sigma transcription factor. Nucleic Acids Res. 1989 Dec 11;17(23):9979–9991. [PMC free article] [PubMed]
  • Mulvey MR, Switala J, Borys A, Loewen PC. Regulation of transcription of katE and katF in Escherichia coli. J Bacteriol. 1990 Dec;172(12):6713–6720. [PMC free article] [PubMed]
  • Mulvey MR, Sorby PA, Triggs-Raine BL, Loewen PC. Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene. 1988 Dec 20;73(2):337–345. [PubMed]
  • Olsén A, Arnqvist A, Hammar M, Sukupolvi S, Normark S. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol. 1993 Feb;7(4):523–536. [PubMed]
  • Sak BD, Eisenstark A, Touati D. Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc Natl Acad Sci U S A. 1989 May;86(9):3271–3275. [PubMed]
  • Sammartano LJ, Tuveson RW, Davenport R. Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus. J Bacteriol. 1986 Oct;168(1):13–21. [PMC free article] [PubMed]
  • Schellhorn HE, Hassan HM. Transcriptional regulation of katE in Escherichia coli K-12. J Bacteriol. 1988 Sep;170(9):4286–4292. [PMC free article] [PubMed]
  • Schellhorn HE, Stones VL. Regulation of katF and katE in Escherichia coli K-12 by weak acids. J Bacteriol. 1992 Jul;174(14):4769–4776. [PMC free article] [PubMed]
  • Singer M, Baker TA, Schnitzler G, Deischel SM, Goel M, Dove W, Jaacks KJ, Grossman AD, Erickson JW, Gross CA. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. [PMC free article] [PubMed]
  • Smirnova GV, Oktyabrsky ON, Moshonkina EV, Zakirova NV. Induction of the alkylation-inducible aidB gene of Escherichia coli by cytoplasmic acidification and N-ethylmaleimide. Mutat Res. 1994 Jan;314(1):51–56. [PubMed]
  • Smith MW, Neidhardt FC. Proteins induced by anaerobiosis in Escherichia coli. J Bacteriol. 1983 Apr;154(1):336–343. [PMC free article] [PubMed]
  • Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H. Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3511–3515. [PubMed]
  • Tormo A, Almirón M, Kolter R. surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol. 1990 Aug;172(8):4339–4347. [PMC free article] [PubMed]
  • Touati E, Dassa E, Dassa J, Boquet PL, Touati D. Are appR and katF the same Escherichia coli gene encoding a new sigma transcription initiation factor? Res Microbiol. 1991 Jan;142(1):29–36. [PubMed]
  • VOGEL HJ, BONNER DM. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed]
  • Volkert MR. Adaptive response of Escherichia coli to alkylation damage. Environ Mol Mutagen. 1988;11(2):241–255. [PubMed]
  • Volkert MR, Hajec LI, Nguyen DC. Induction of the alkylation-inducible aidB gene of Escherichia coli by anaerobiosis. J Bacteriol. 1989 Feb;171(2):1196–1198. [PMC free article] [PubMed]
  • Volkert MR, Loewen PC, Switala J, Crowley D, Conley M. The delta (argF-lacZ)205(U169) deletion greatly enhances resistance to hydrogen peroxide in stationary-phase Escherichia coli. J Bacteriol. 1994 Mar;176(5):1297–1302. [PMC free article] [PubMed]
  • Volkert MR, Nguyen DC. Induction of specific Escherichia coli genes by sublethal treatments with alkylating agents. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4110–4114. [PubMed]
  • von Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol. 1991 Jan;173(2):514–520. [PMC free article] [PubMed]
  • Wanner BL. Novel regulatory mutants of the phosphate regulon in Escherichia coli K-12. J Mol Biol. 1986 Sep 5;191(1):39–58. [PubMed]
  • Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)