Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1994 December; 176(24): 7468–7475.
PMCID: PMC197202

Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae.


Mutational analysis of the bean-pathogenic Pseudomonas syringae pv. syringae strain B728a has led to the genetic identification of the gacA gene as encoding the response regulator for the unlinked lemA sensor kinase. The analysis of a collection of spontaneous mutants of P. syringae pv. syringae suggested that the gacA gene was involved in lesion formation and the production of protease and syringomycin. The gacA gene originally was identified as a regulator of extracellular antibiotic production by Pseudomonas fluorescens, and the predicted GacA protein is a member of the FixJ family of bacterial response regulators. The sequence of the putative B728a GacA protein revealed 92% identity with the P. fluorescens GacA protein. An insertional mutation within the P. syringae pv. syringae gacA gene abrogated lesion formation on beans, production of extracellular protease, and production of the toxin syringomycin, the same phenotypes affected by a lemA mutation. DNA sequence analysis identified the P. syringae pv. syringae uvrC gene immediately downstream of the gacA gene, an arrangement conserved in P. fluorescens and Escherichia coli. The gacA insertional mutant was sensitive to UV, presumably because of polarity on transcription of the downstream uvrC gene. Southwestern (DNA-protein) analysis revealed that the lemA and gacA genes were required for the full expression of a DNA binding activity.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barta TM, Kinscherf TG, Uchytil TF, Willis DK. DNA sequence and transcriptional analysis of the tblA gene required for tabtoxin biosynthesis by Pseudomonas syringae. Appl Environ Microbiol. 1993 Feb;59(2):458–466. [PMC free article] [PubMed]
  • Barta TM, Kinscherf TG, Willis DK. Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. J Bacteriol. 1992 May;174(9):3021–3029. [PMC free article] [PubMed]
  • Bourret RB, Borkovich KA, Simon MI. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem. 1991;60:401–441. [PubMed]
  • Bowen B, Steinberg J, Laemmli UK, Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. [PMC free article] [PubMed]
  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. [PubMed]
  • Chang CH, Winans SC. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol. 1992 Nov;174(21):7033–7039. [PMC free article] [PubMed]
  • Deretic V, Leveau JH, Mohr CD, Hibler NS. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol Microbiol. 1992 Oct;6(19):2761–2767. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Ditta G, Stanfield S, Corbin D, Helinski DR. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. [PubMed]
  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, et al. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact. 1994 Jul-Aug;7(4):455–463. [PubMed]
  • Hrabak EM, Willis DK. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol. 1992 May;174(9):3011–3020. [PMC free article] [PubMed]
  • Iuchi S, Lin EC. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol. 1992 Jun;174(12):3972–3980. [PMC free article] [PubMed]
  • Jones JD, Gutterson N. An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene. 1987;61(3):299–306. [PubMed]
  • KING EO, WARD MK, RANEY DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed]
  • Kinscherf TG, Coleman RH, Barta TM, Willis DK. Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae. J Bacteriol. 1991 Jul;173(13):4124–4132. [PMC free article] [PubMed]
  • Thomas JO, Kornberg RD. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Laville J, Voisard C, Keel C, Maurhofer M, Défago G, Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1562–1566. [PubMed]
  • Liao CH, McCallus DE, Fett WF. Molecular characterization of two gene loci required for production of the key pathogenicity factor pectate lyase in Pseudomonas viridiflava. Mol Plant Microbe Interact. 1994 May-Jun;7(3):391–400. [PubMed]
  • Mo YY, Gross DC. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J Bacteriol. 1991 Sep;173(18):5784–5792. [PMC free article] [PubMed]
  • Moolenaar GF, van Sluis CA, Backendorf C, van de Putte P. Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kD protein. Nucleic Acids Res. 1987 May 26;15(10):4273–4289. [PMC free article] [PubMed]
  • Ota IM, Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science. 1993 Oct 22;262(5133):566–569. [PubMed]
  • Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. [PubMed]
  • Quigley NB, Gross DC. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Mol Plant Microbe Interact. 1994 Jan-Feb;7(1):78–90. [PubMed]
  • Rich JJ, Hirano SS, Willis DK. Pathovar-specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation. Appl Environ Microbiol. 1992 May;58(5):1440–1446. [PMC free article] [PubMed]
  • Sacherer P, Défago G, Haas D. Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett. 1994 Feb 15;116(2):155–160. [PubMed]
  • Sharma S, Stark TF, Beattie WG, Moses RE. Multiple control elements for the uvrC gene unit of Escherichia coli. Nucleic Acids Res. 1986 Mar 11;14(5):2301–2318. [PMC free article] [PubMed]
  • Staskawicz B, Dahlbeck D, Keen N, Napoli C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987 Dec;169(12):5789–5794. [PMC free article] [PubMed]
  • Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. [PMC free article] [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PubMed]
  • Vieira J, Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. [PubMed]
  • Willis DK, Rich JJ, Kinscherf TG, Kitten T. Genetic regulation in plant pathogenic pseudomonads. Genet Eng (N Y) 1994;16:167–193. [PubMed]
  • Winans SC. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev. 1992 Mar;56(1):12–31. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)