Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1992 July; 58(7): 2158–2163.
PMCID: PMC195749

Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences.


A method for quantifying eubacterial cell densities in dilute communities of small bacterioplankton is presented. Cells in water samples were stained with 4',6-diamidino-2-phenylindole (DAPI), transferred to gelatin-coated slides, and hybridized with rhodamine-labeled oligonucleotide probes specific for kingdom-level 16S rRNA sequences. Between 48 and 69% of the cells captured on membrane filters were transferred to gelatin-coated slides. The number of DAPI-stained cells that were visualized with eubacterial probes varied from 35 to 67%. Only 2 to 4% of these cells also fluoresced following hybridization with a probe designed to target a eukaryotic 16S rRNA sequence. Between 0.1 and 6% of the bacterioplankton in these samples were autofluorescent and may have been mistaken as cells that hybridized with fluorescent oligonucleotide probes. Dual staining allows precise estimates of the efficiency of transfers of cells to gelatin films and can be used to measure the percentage of the total bacterioplankton that also hybridize with fluorescent oligonucleotide probes, indicating specific phylogenetic groups.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. [PMC free article] [PubMed]
  • Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. [PMC free article] [PubMed]
  • Baker KH, Mills AL. Determination of the Number of Respiring Thiobacillus ferrooxidans Cells in Water Samples by Using Combined Fluorescent Antibody-2-(p-Iodophenyl)-3-(p-Nitrophenyl)-5-Phenyltetrazolium Chloride Staining. Appl Environ Microbiol. 1982 Feb;43(2):338–344. [PMC free article] [PubMed]
  • Bohlool BB, Brock TD. Population ecology of Sulfolobus acidocaldarius. II. Immunoecolgical studies. Arch Microbiol. 1974 May 16;97(3):181–194. [PubMed]
  • DeLong EF, Wickham GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. [PubMed]
  • Fliermans CB, Bohlool BB, Schmidt EL. Autecological study of the chemoautotroph Nitrobacter by immunofluorescence. Appl Microbiol. 1974 Jan;27(1):124–129. [PMC free article] [PubMed]
  • Fliermans CB, Hazen TC. Immunofluorescence of Aeromonas hydrophila as measured by fluorescence photometric microscopy. Can J Microbiol. 1980 Feb;26(2):161–168. [PubMed]
  • Fliermans CB, Schmidt EL. Autoradiography and immunofluorescence combined for autecological study of single cell activity with Nitrobacter as a model system. Appl Microbiol. 1975 Oct;30(4):676–684. [PMC free article] [PubMed]
  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. [PMC free article] [PubMed]
  • Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. [PMC free article] [PubMed]
  • Hoff KA. Rapid and simple method for double staining of bacteria with 4',6-diamidino-2-phenylindole and fluorescein isothiocyanate-labeled antibodies. Appl Environ Microbiol. 1988 Dec;54(12):2949–2952. [PMC free article] [PubMed]
  • Johnson GD, Nogueira Araujo GM. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. [PubMed]
  • Kirchman D, Ducklow H, Mitchell R. Estimates of bacterial growth from changes in uptake rates and biomass. Appl Environ Microbiol. 1982 Dec;44(6):1296–1307. [PMC free article] [PubMed]
  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337–365. [PubMed]
  • Paul JH. Use of hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria. Appl Environ Microbiol. 1982 Apr;43(4):939–944. [PMC free article] [PubMed]
  • Stahl DA, Flesher B, Mansfield HR, Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. [PMC free article] [PubMed]
  • Tabor PS, Neihof RA. Improved method for determination of respiring individual microorganisms in natural waters. Appl Environ Microbiol. 1982 Jun;43(6):1249–1255. [PMC free article] [PubMed]
  • Tsien HC, Bratina BJ, Tsuji K, Hanson RS. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol. 1990 Sep;56(9):2858–2865. [PMC free article] [PubMed]
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. [PMC free article] [PubMed]
  • Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)