PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
 
J Virol. Jul 1997; 71(7): 5051–5059.
PMCID: PMC191738
The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection.
A D Yurochko, E S Hwang, L Rasmussen, S Keay, L Pereira, and E S Huang
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7295, USA. yurochko@med.unc.edu
Abstract
The cellular transcription factors Sp1 and NF-kappaB were upregulated shortly after the binding of purified live or UV-inactivated human cytomegalovirus (HCMV) to the cell surface. The rapid time frame of transcription factor induction is similar to that seen in other systems in which cellular factors are induced following receptor-ligand engagement. This similarity suggested that a cellular receptor-viral ligand interaction might be involved in Sp1 and NF-kappaB activation during the earliest stages of HCMV infection. To focus on the possible role viral ligands play in initiating cellular events following infection, we first used purified viral membrane extracts to demonstrate that constituents on the membrane are responsible for cellular activation. Additionally, these studies showed, through the use of neutralizing antibodies, that the viral membrane mediators of this activation are the major envelope glycoproteins gB (UL55) and gH (UL75). To confirm these results, neutralizing anti-gB and -gH antibodies were used to block the interactions of these glycoproteins on whole purified virus with their cell surface receptors. In so doing, we found that Sp1 and NF-kappaB induction was inhibited. Lastly, through the use of purified viral gB protein and an anti-idiotypic antibody that mimics the image of the viral gH protein, it was found that the engagement of individual viral ligands with their appropriate cell surface receptors was sufficient to activate cellular Sp1 and NF-kappaB. These results support our hypothesis that HCMV glycoproteins mediate an initial signal transduction pathway which leads to the upregulation of host cell transcription factors and suggests a model wherein the orderly sequence of virus-mediated changes in cellular activation initiates with viral binding via envelope glycoproteins to the cognate cellular receptor(s).
Full Text
The Full Text of this article is available as a PDF (2.5M).
Articles from Journal of Virology are provided here courtesy of
American Society for Microbiology (ASM)