PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
 
J Virol. 1997 June; 71(6): 4638–4648.
PMCID: PMC191685

Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF-kappaB promoters.

Abstract

During human cytomegalovirus (HCMV) infection, the promoters for the classical NF-kappaB subunits (p65 and p105/p50) are transactivated. Previously, we demonstrated that the viral immediate-early (IE) proteins (IE1-72, IE2-55, and IE2-86) were involved in this upregulation. These viral factors alone, however, could not account for the entirety of the increased levels of transcription. Because one of the hallmarks of HCMV infection is the induction of cellular transcription factors, we hypothesized that one or more of these induced factors was also critical to the regulation of NF-kappaB during infection. Sp1 was one such factor that might be involved because p65 promoter activity was upregulated by Sp1 and both of the NF-kappaB subunit promoters are GC rich and contain Sp1 binding sites. Therefore, to detail the role that Sp1 plays in the regulation of NF-kappaB during infection, we initially examined Sp1 levels for changes during infection. HCMV infection resulted in increased Sp1 mRNA expression, protein levels, and DNA binding activity. Because both promoters were transactivated by Sp1, we reasoned that the upregulation of Sp1 played a role in p65 and p105/p50 promoter activity during infection. To address the specific role of Sp1 in p65 and p105/p50 promoter transactivation by HCMV, we mutated both promoters. These results demonstrated that the Sp1-specific DNA binding sites were involved in the virus-mediated transactivation. Last, to further dissect the role of HCMV in the Sp1-mediated induction of NF-kappaB, we examined the role that the viral IE genes played in Sp1 regulation. The IE gene products (IE1-72, IE2-55, and IE2-86) cooperated with Sp1 to increase promoter transactivation and physically interacted with Sp1. In addition, the IE2-86 product increased Sp1 DNA binding by possibly freeing up inactive Sp1. These data supported our hypothesis that Sp1 was involved in the upregulation of NF-kappaB during HCMV infection through the Sp1 binding sites in the p65 and p105/p50 promoters and additionally demonstrated a potential viral mechanism that might be responsible for the upregulation of Sp1 activity.

Full Text

The Full Text of this article is available as a PDF (1.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baeuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell. 1988 Apr 22;53(2):211–217. [PubMed]
  • Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988 Oct 28;242(4878):540–546. [PubMed]
  • Baracchini E, Glezer E, Fish K, Stenberg RM, Nelson JA, Ghazal P. An isoform variant of the cytomegalovirus immediate-early auto repressor functions as a transcriptional activator. Virology. 1992 Jun;188(2):518–529. [PubMed]
  • Beg AA, Ruben SM, Scheinman RI, Haskill S, Rosen CA, Baldwin AS., Jr I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev. 1992 Oct;6(10):1899–1913. [PubMed]
  • Boldogh I, Fons MP, Albrecht T. Increased levels of sequence-specific DNA-binding proteins in human cytomegalovirus-infected cells. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1505–1510. [PubMed]
  • Briggs MR, Kadonaga JT, Bell SP, Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. [PubMed]
  • Chen LI, Nishinaka T, Kwan K, Kitabayashi I, Yokoyama K, Fu YH, Grünwald S, Chiu R. The retinoblastoma gene product RB stimulates Sp1-mediated transcription by liberating Sp1 from a negative regulator. Mol Cell Biol. 1994 Jul;14(7):4380–4389. [PMC free article] [PubMed]
  • Cherrington JM, Mocarski ES. Human cytomegalovirus ie1 transactivates the alpha promoter-enhancer via an 18-base-pair repeat element. J Virol. 1989 Mar;63(3):1435–1440. [PMC free article] [PubMed]
  • Chinnadurai G. Modulation of HIV-enhancer activity by heterologous agents: a minireview. Gene. 1991 May 30;101(2):165–170. [PubMed]
  • Cogswell PC, Mayo MW, Baldwin AS., Jr Involvement of Egr-1/RelA synergy in distinguishing T cell activation from tumor necrosis factor-alpha-induced NF-kappa B1 transcription. J Exp Med. 1997 Feb 3;185(3):491–497. [PMC free article] [PubMed]
  • Cogswell PC, Scheinman RI, Baldwin AS., Jr Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. J Immunol. 1993 Apr 1;150(7):2794–2804. [PubMed]
  • Courey AJ, Holtzman DA, Jackson SP, Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell. 1989 Dec 1;59(5):827–836. [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Dynan WS, Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell. 1983 Nov;35(1):79–87. [PubMed]
  • Dynan WS, Tjian R. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell. 1983 Mar;32(3):669–680. [PubMed]
  • Everett RD, Baty D, Chambon P. The repeated GC-rich motifs upstream from the TATA box are important elements of the SV40 early promoter. Nucleic Acids Res. 1983 Apr 25;11(8):2447–2464. [PMC free article] [PubMed]
  • Finco TS, Baldwin AS. Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity. 1995 Sep;3(3):263–272. [PubMed]
  • Furnari BA, Poma E, Kowalik TF, Huong SM, Huang ES. Human cytomegalovirus immediate-early gene 2 protein interacts with itself and with several novel cellular proteins. J Virol. 1993 Aug;67(8):4981–4991. [PMC free article] [PubMed]
  • Ganchi PA, Sun SC, Greene WC, Ballard DW. I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol Biol Cell. 1992 Dec;3(12):1339–1352. [PMC free article] [PubMed]
  • Gidoni D, Dynan WS, Tjian R. Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature. 312(5993):409–413. [PubMed]
  • Hagen G, Müller S, Beato M, Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res. 1992 Nov 11;20(21):5519–5525. [PMC free article] [PubMed]
  • Hammarskjöld ML, Simurda MC. Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. J Virol. 1992 Nov;66(11):6496–6501. [PMC free article] [PubMed]
  • Haskill S, Beg AA, Tompkins SM, Morris JS, Yurochko AD, Sampson-Johannes A, Mondal K, Ralph P, Baldwin AS., Jr Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell. 1991 Jun 28;65(7):1281–1289. [PubMed]
  • Huang ES. Human cytomegalovirus. III. Virus-induced DNA polymerase. J Virol. 1975 Aug;16(2):298–310. [PMC free article] [PubMed]
  • Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell. 1990 Oct 5;63(1):155–165. [PubMed]
  • Jackson SP, Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 1988 Oct 7;55(1):125–133. [PubMed]
  • Jault FM, Jault JM, Ruchti F, Fortunato EA, Clark C, Corbeil J, Richman DD, Spector DH. Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol. 1995 Nov;69(11):6697–6704. [PMC free article] [PubMed]
  • Jones KA, Kadonaga JT, Luciw PA, Tjian R. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science. 1986 May 9;232(4751):755–759. [PubMed]
  • Jones KA, Tjian R. Sp1 binds to promoter sequences and activates herpes simplex virus 'immediate-early' gene transcription in vitro. Nature. 1985 Sep 12;317(6033):179–182. [PubMed]
  • Kadonaga JT, Carner KR, Masiarz FR, Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. [PubMed]
  • Karlseder J, Rotheneder H, Wintersberger E. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol. 1996 Apr;16(4):1659–1667. [PMC free article] [PubMed]
  • Kim SJ, Onwuta US, Lee YI, Li R, Botchan MR, Robbins PD. The retinoblastoma gene product regulates Sp1-mediated transcription. Mol Cell Biol. 1992 Jun;12(6):2455–2463. [PMC free article] [PubMed]
  • Kingsley C, Winoto A. Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression. Mol Cell Biol. 1992 Oct;12(10):4251–4261. [PMC free article] [PubMed]
  • Klucher KM, Sommer M, Kadonaga JT, Spector DH. In vivo and in vitro analysis of transcriptional activation mediated by the human cytomegalovirus major immediate-early proteins. Mol Cell Biol. 1993 Feb;13(2):1238–1250. [PMC free article] [PubMed]
  • Kowalik TF, Wing B, Haskill JS, Azizkhan JC, Baldwin AS, Jr, Huang ES. Multiple mechanisms are implicated in the regulation of NF-kappa B activity during human cytomegalovirus infection. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1107–1111. [PubMed]
  • Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol. 1996 Apr;16(4):1668–1675. [PMC free article] [PubMed]
  • Lukac DM, Manuppello JR, Alwine JC. Transcriptional activation by the human cytomegalovirus immediate-early proteins: requirements for simple promoter structures and interactions with multiple components of the transcription complex. J Virol. 1994 Aug;68(8):5184–5193. [PMC free article] [PubMed]
  • Majello B, De Luca P, Hagen G, Suske G, Lania L. Different members of the Sp1 multigene family exert opposite transcriptional regulation of the long terminal repeat of HIV-1. Nucleic Acids Res. 1994 Nov 25;22(23):4914–4921. [PMC free article] [PubMed]
  • Majello B, De Luca P, Suske G, Lania L. Differential transcriptional regulation of c-myc promoter through the same DNA binding sites targeted by Sp1-like proteins. Oncogene. 1995 May 4;10(9):1841–1848. [PubMed]
  • Margolis MJ, Pajovic S, Wong EL, Wade M, Jupp R, Nelson JA, Azizkhan JC. Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J Virol. 1995 Dec;69(12):7759–7767. [PMC free article] [PubMed]
  • Pascal E, Tjian R. Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev. 1991 Sep;5(9):1646–1656. [PubMed]
  • Perkins ND, Agranoff AB, Pascal E, Nabel GJ. An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol Cell Biol. 1994 Oct;14(10):6570–6583. [PMC free article] [PubMed]
  • Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J. 1993 Sep;12(9):3551–3558. [PubMed]
  • Poma EE, Kowalik TF, Zhu L, Sinclair JH, Huang ES. The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J Virol. 1996 Nov;70(11):7867–7877. [PMC free article] [PubMed]
  • Rong BL, Libermann TA, Kogawa K, Ghosh S, Cao LX, Pavan-Langston D, Dunkel EC. HSV-1-inducible proteins bind to NF-kappa B-like sites in the HSV-1 genome. Virology. 1992 Aug;189(2):750–756. [PubMed]
  • Saffer JD, Jackson SP, Thurston SJ. SV40 stimulates expression of the transacting factor Sp1 at the mRNA level. Genes Dev. 1990 Apr;4(4):659–666. [PubMed]
  • Sambucetti LC, Cherrington JM, Wilkinson GW, Mocarski ES. NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J. 1989 Dec 20;8(13):4251–4258. [PubMed]
  • Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol. 1994;10:405–455. [PubMed]
  • Sif S, Capobianco AJ, Gilmore TD. The v-Rel oncoprotein increases expression from Sp1 site-containing promoters in chicken embryo fibroblasts. Oncogene. 1993 Sep;8(9):2501–2509. [PubMed]
  • Sif S, Gilmore TD. Interaction of the v-Rel oncoprotein with cellular transcription factor Sp1. J Virol. 1994 Nov;68(11):7131–7138. [PMC free article] [PubMed]
  • Ten RM, Paya CV, Israël N, Le Bail O, Mattei MG, Virelizier JL, Kourilsky P, Israël A. The characterization of the promoter of the gene encoding the p50 subunit of NF-kappa B indicates that it participates in its own regulation. EMBO J. 1992 Jan;11(1):195–203. [PubMed]
  • Thanos D, Maniatis T. NF-kappa B: a lesson in family values. Cell. 1995 Feb 24;80(4):529–532. [PubMed]
  • Udvadia AJ, Rogers KT, Higgins PD, Murata Y, Martin KH, Humphrey PA, Horowitz JM. Sp-1 binds promoter elements regulated by the RB protein and Sp-1-mediated transcription is stimulated by RB coexpression. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3265–3269. [PubMed]
  • Udvadia AJ, Templeton DJ, Horowitz JM. Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3953–3957. [PubMed]
  • Ueberla K, Lu Y, Chung E, Haseltine WA. The NF-kappa B p65 promoter. J Acquir Immune Defic Syndr. 1993 Mar;6(3):227–230. [PubMed]
  • Wade M, Kowalik TF, Mudryj M, Huang ES, Azizkhan JC. E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol Cell Biol. 1992 Oct;12(10):4364–4374. [PMC free article] [PubMed]
  • Yurochko AD, Kowalik TF, Huong SM, Huang ES. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J Virol. 1995 Sep;69(9):5391–5400. [PMC free article] [PubMed]
  • Zabel U, Henkel T, Silva MS, Baeuerle PA. Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus. EMBO J. 1993 Jan;12(1):201–211. [PubMed]
  • Zalani S, Holley-Guthrie EA, Gutsch DE, Kenney SC. The Epstein-Barr virus immediate-early promoter BRLF1 can be activated by the cellular Sp1 transcription factor. J Virol. 1992 Dec;66(12):7282–7292. [PMC free article] [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)