Search tips
Search criteria 


Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. 1997 April; 71(4): 2873–2880.
PMCID: PMC191413

Chicken YB-2, a Y-box protein, is a potent activator of Rous sarcoma virus long terminal repeat-driven transcription in avian fibroblasts.


We have previously reported on the cloning and characterization of chk-YB-2, a novel member of the Y-box family of proteins, that binds to the sequence 5'-GTACCACC-3' present on the noncoding strand of the Rous sarcoma virus (RSV) long terminal repeat (LTR) in a single-strand-specific manner. Here, we demonstrate that deletion or mutation of this motif not only eliminates chk-YB-2 binding in vitro but also down-regulates RSV LTR-driven transcription in avian cells. Selective abrogation of chk-YB-2 expression by using antisense oligonucleotides decreased RSV LTR-driven transcription in a promoter-specific manner. This inhibition was not observed when a reporter construct with a deletion in the chk-YB-2 binding site was used. Depletion of cellular chk-YB-2 by transfecting the cells with excess of its recognition sequence oligonucleotides also resulted in reduced transcription from the RSV LTR. Taken together, these results suggest that chk-YB-2 acts as an activator of LTR-promoted transcription in avian cells and that this activation is mediated primarily through the sequence 5'-GTACCACC-3'.

Full Text

The Full Text of this article is available as a PDF (806K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abdulkadir SA, Ono SJ. How are class II MHC genes turned on and off? FASEB J. 1995 Nov;9(14):1429–1435. [PubMed]
  • Boulden A, Sealy L. Identification of a third protein factor which binds to the Rous sarcoma virus LTR enhancer: possible homology with the serum response factor. Virology. 1990 Jan;174(1):204–216. [PubMed]
  • Cleavinger PJ, Shin BA, Kandala JC, Nambiar A, Swamynathan SK, Guntaka RV. Cloning of Rous sarcoma virus enhancer factor genes. II. RSV-EF-II, abundantly expressed in fibroblasts and muscle tissue, binds to an octamer sequence, 5'-GTACCACC-3', in the noncoding strand of RSV enhancer. Virology. 1996 Aug 1;222(1):133–143. [PubMed]
  • Cohen I, Reynolds WF. The Xenopus YB3 protein binds the B box element of the class III promoter. Nucleic Acids Res. 1991 Sep 11;19(17):4753–4759. [PMC free article] [PubMed]
  • Cullen BR, Raymond K, Ju G. Functional analysis of the transcription control region located within the avian retroviral long terminal repeat. Mol Cell Biol. 1985 Mar;5(3):438–447. [PMC free article] [PubMed]
  • Cullen BR, Raymond K, Ju G. Transcriptional activity of avian retroviral long terminal repeats directly correlates with enhancer activity. J Virol. 1985 Feb;53(2):515–521. [PMC free article] [PubMed]
  • Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD. Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7322–7326. [PubMed]
  • Dutta A, Stoeckle MY, Hanafusa H. Serum and v-src increase the level of a CCAAT-binding factor required for transcription from a retroviral long terminal repeat. Genes Dev. 1990 Feb;4(2):243–254. [PubMed]
  • Gai XX, Lipson KE, Prystowsky MB. Unusual DNA binding characteristics of an in vitro translation product of the CCAAT binding protein mYB-1. Nucleic Acids Res. 1992 Feb 11;20(3):601–606. [PMC free article] [PubMed]
  • Goodwin GH. Identification of three sequence-specific DNA-binding proteins which interact with the Rous sarcoma virus enhancer and upstream promoter elements. J Virol. 1988 Jun;62(6):2186–2190. [PMC free article] [PubMed]
  • Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6777–6781. [PubMed]
  • Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. [PMC free article] [PubMed]
  • Gowda S, Rao AS, Kim YW, Guntaka RV. Identification of sequences in the long terminal repeat of avian sarcoma virus required for efficient transcription. Virology. 1988 Jan;162(1):243–247. [PubMed]
  • Grant CE, Deeley RG. Cloning and characterization of chicken YB-1: regulation of expression in the liver. Mol Cell Biol. 1993 Jul;13(7):4186–4196. [PMC free article] [PubMed]
  • Greuel BT, Sealy L, Majors JE. Transcriptional activity of the Rous sarcoma virus long terminal repeat correlates with binding of a factor to an upstream CCAAT box in vitro. Virology. 1990 Jul;177(1):33–43. [PubMed]
  • Houtz EK, Conklin KF. Identification of EFIV, a stable factor present in many avian cell types that transactivates sequences in the 5' portion of the Rous sarcoma virus long terminal repeat enhancer. J Virol. 1996 Jan;70(1):393–401. [PMC free article] [PubMed]
  • Kandala JC, Guntaka RV. Cloning of Rous sarcoma virus enhancer factor genes. I. Evidence that RSV-EF-I is related to Y-box (inverted CCAAT) binding proteins and binds to multiple motifs in the RSV enhancer. Virology. 1994 Feb;198(2):514–523. [PubMed]
  • Kenny S, Guntaka RV. Localization by mutational analysis of transcription factor binding sequences in the U3 region of Rous sarcoma virus LTR. Virology. 1990 Jun;176(2):483–493. [PubMed]
  • Kolluri R, Torrey TA, Kinniburgh AJ. A CT promoter element binding protein: definition of a double-strand and a novel single-strand DNA binding motif. Nucleic Acids Res. 1992 Jan 11;20(1):111–116. [PMC free article] [PubMed]
  • Ladomery M, Sommerville J. A role for Y-box proteins in cell proliferation. Bioessays. 1995 Jan;17(1):9–11. [PubMed]
  • Laimins LA, Tsichlis P, Khoury G. Multiple enhancer domains in the 3' terminus of the Prague strain of Rous sarcoma virus. Nucleic Acids Res. 1984 Aug 24;12(16):6427–6442. [PMC free article] [PubMed]
  • MacDonald GH, Itoh-Lindstrom Y, Ting JP. The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter. J Biol Chem. 1995 Feb 24;270(8):3527–3533. [PubMed]
  • Majors J. The structure and function of retroviral long terminal repeats. Curr Top Microbiol Immunol. 1990;157:49–92. [PubMed]
  • Mitsialis SA, Manley JL, Guntaka RV. Localization of active promoters for eucaryotic RNA polymerase II in the long terminal repeat of avian sarcoma virus DNA. Mol Cell Biol. 1983 May;3(5):811–818. [PMC free article] [PubMed]
  • Norton PA, Coffin JM. Characterization of Rous sarcoma virus sequences essential for viral gene expression. J Virol. 1987 Apr;61(4):1171–1179. [PMC free article] [PubMed]
  • Ozer J, Faber M, Chalkley R, Sealy L. Isolation and characterization of a cDNA clone for the CCAAT transcription factor EFIA reveals a novel structural motif. J Biol Chem. 1990 Dec 25;265(36):22143–22152. [PubMed]
  • Raj GV, Safak M, MacDonald GH, Khalili K. Transcriptional regulation of human polyomavirus JC: evidence for a functional interaction between RelA (p65) and the Y-box-binding protein, YB-1. J Virol. 1996 Sep;70(9):5944–5953. [PMC free article] [PubMed]
  • Ranjan M, Tafuri SR, Wolffe AP. Masking mRNA from translation in somatic cells. Genes Dev. 1993 Sep;7(9):1725–1736. [PubMed]
  • Ruddell A. Transcription regulatory elements of the avian retroviral long terminal repeat. Virology. 1995 Jan 10;206(1):1–7. [PubMed]
  • Ruddell A, Linial ML, Groudine M. Tissue-specific lability and expression of avian leukosis virus long terminal repeat enhancer-binding proteins. Mol Cell Biol. 1989 Dec;9(12):5660–5668. [PMC free article] [PubMed]
  • Ryden TA, de Mars M, Beemon K. Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers. J Virol. 1993 May;67(5):2862–2870. [PMC free article] [PubMed]
  • Sealey L, Chalkley R. At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer. Mol Cell Biol. 1987 Feb;7(2):787–798. [PMC free article] [PubMed]
  • Sears RC, Sealy L. Characterization of nuclear proteins that bind the EFII enhancer sequence in the Rous sarcoma virus long terminal repeat. J Virol. 1992 Nov;66(11):6338–6352. [PMC free article] [PubMed]
  • Sommerville J, Ladomery M. Masking of mRNA by Y-box proteins. FASEB J. 1996 Mar;10(4):435–443. [PubMed]
  • Tafuri SR, Familari M, Wolffe AP. A mouse Y box protein, MSY1, is associated with paternal mRNA in spermatocytes. J Biol Chem. 1993 Jun 5;268(16):12213–12220. [PubMed]
  • Tafuri SR, Wolffe AP. DNA binding, multimerization, and transcription stimulation by the Xenopus Y box proteins in vitro. New Biol. 1992 Apr;4(4):349–359. [PubMed]
  • Tafuri SR, Wolffe AP. Selective recruitment of masked maternal mRNA from messenger ribonucleoprotein particles containing FRGY2 (mRNP4). J Biol Chem. 1993 Nov 15;268(32):24255–24261. [PubMed]
  • Ting JP, Painter A, Zeleznik-Le NJ, MacDonald G, Moore TM, Brown A, Schwartz BD. YB-1 DNA-binding protein represses interferon gamma activation of class II major histocompatibility complex genes. J Exp Med. 1994 May 1;179(5):1605–1611. [PMC free article] [PubMed]
  • Wang H, Liu K, Yuan F, Berdichevsky L, Taichman LB, Auborn K. C/EBPbeta is a negative regulator of human papillomavirus type 11 in keratinocytes. J Virol. 1996 Jul;70(7):4839–4844. [PMC free article] [PubMed]
  • Wolffe AP. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays. 1994 Apr;16(4):245–251. [PubMed]
  • Wright KL, Vilen BJ, Itoh-Lindstrom Y, Moore TL, Li G, Criscitiello M, Cogswell P, Clarke JB, Ting JP. CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors. EMBO J. 1994 Sep 1;13(17):4042–4053. [PubMed]
  • Zachow KR, Conklin KF. CArG, CCAAT, and CCAAT-like protein binding sites in avian retrovirus long terminal repeat enhancers. J Virol. 1992 Apr;66(4):1959–1970. [PMC free article] [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)