Search tips
Search criteria 


Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. 1996 December; 70(12): 8468–8476.
PMCID: PMC190937

Analysis of the human env-specific cytotoxic T-lymphocyte (CTL) response in natural human immunodeficiency virus type 1 infection: low prevalence of broadly cross-reactive env-specific CTL.


Major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) are part of the cellular immune response to persistent virus infections. Candidate vaccines against human immunodeficiency virus type 1 (HIV-1) should elicit broad cross-reactive immunity to confer protection against different strains of HIV-1. As it is likely that candidate vaccines will include the envelope gene product Env, we determined the proportion of CTL clones which recognized variable and conserved determinants in three env variants during natural infection. Limiting dilution analysis was used to characterize numerous short-term CTL clones derived from peripheral blood of HIV-1-infected subjects, using split-well analysis to assay cytotoxicity against target cells expressing gp160env of HIV-1 strains IIIB, MN, and RF. In 9 of 12 HIV-1-infected subjects, at the clonal level most env-specific CTL recognized determinant(s) within one env variant but not in the other variants. In some subjects, CTL recognized multiple nonconserved determinants in different variants. The pattern of recognition of different env variants was relatively stable over time. In most of the patients studied, the proportion of CTL which showed cross-recognition of conserved determinants shared among the three strains was low. Two novel CTL epitopes within gp41 were identified by using 15-mer peptides of the HIV-SF2 sequence. When specific peptide was used to stimulate CTL precursors in vitro, the frequency of peptide-specific CTL precursors was very high, but the CTL elicited by this stimulation were highly strain specific. We conclude that the use of a single HIV env variant to detect CTL activity can underestimate the magnitude and complexity of the env-specific CTL response. The low prevalence of CTL clones which show cross-recognition of conserved determinants may have implications for immunization strategies based solely on env; to elicit broadly cross-reactive CTL other, more conserved viral antigens are likely to be needed in addition to env. Because of its capacity to distinguish CTL responses against different virus strains, limiting dilution analysis is particularly appropriate to quantitate the immune responses generated by candidate env-based vaccines.

Full Text

The Full Text of this article is available as a PDF (627K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ada G. HIV. Towards phase III trials for candidate vaccines. Nature. 1993 Aug 5;364(6437):489–490. [PubMed]
  • Albert J, Abrahamsson B, Nagy K, Aurelius E, Gaines H, Nyström G, Fenyö EM. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS. 1990 Feb;4(2):107–112. [PubMed]
  • Alp NJ, Sissons JG, Borysiewicz LK. Automation of limiting dilution cytotoxicity assays. J Immunol Methods. 1990 May 25;129(2):269–276. [PubMed]
  • Carmichael A, Jin X, Sissons P, Borysiewicz L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med. 1993 Feb 1;177(2):249–256. [PMC free article] [PubMed]
  • Chen ZW, Shen L, Miller MD, Ghim SH, Hughes AL, Letvin NL. Cytotoxic T lymphocytes do not appear to select for mutations in an immunodominant epitope of simian immunodeficiency virus gag. J Immunol. 1992 Dec 15;149(12):4060–4066. [PubMed]
  • Cheynier R, Henrichwark S, Hadida F, Pelletier E, Oksenhendler E, Autran B, Wain-Hobson S. HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell. 1994 Aug 12;78(3):373–387. [PubMed]
  • Dai LC, West K, Littaua R, Takahashi K, Ennis FA. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J Virol. 1992 May;66(5):3151–3154. [PMC free article] [PubMed]
  • Fazekas de St Groth The evaluation of limiting dilution assays. J Immunol Methods. 1982 Mar 12;49(2):R11–R23. [PubMed]
  • Hoffenbach A, Langlade-Demoyen P, Dadaglio G, Vilmer E, Michel F, Mayaud C, Autran B, Plata F. Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. J Immunol. 1989 Jan 15;142(2):452–462. [PubMed]
  • Johnson RP, Hammond SA, Trocha A, Siliciano RF, Walker BD. Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine. J Virol. 1994 May;68(5):3145–3153. [PMC free article] [PubMed]
  • Johnson RP, Trocha A, Buchanan TM, Walker BD. Identification of overlapping HLA class I-restricted cytotoxic T cell epitopes in a conserved region of the human immunodeficiency virus type 1 envelope glycoprotein: definition of minimum epitopes and analysis of the effects of sequence variation. J Exp Med. 1992 Apr 1;175(4):961–971. [PMC free article] [PubMed]
  • Johnson RP, Trocha A, Buchanan TM, Walker BD. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol. 1993 Jan;67(1):438–445. [PMC free article] [PubMed]
  • Klenerman P, Meier UC, Phillips RE, McMichael AJ. The effects of natural altered peptide ligands on the whole blood cytotoxic T lymphocyte response to human immunodeficiency virus. Eur J Immunol. 1995 Jul;25(7):1927–1931. [PubMed]
  • Koenig S, Earl P, Powell D, Pantaleo G, Merli S, Moss B, Fauci AS. Group-specific, major histocompatibility complex class I-restricted cytotoxic responses to human immunodeficiency virus 1 (HIV-1) envelope proteins by cloned peripheral blood T cells from an HIV-1-infected individual. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8638–8642. [PubMed]
  • Koup RA. Virus escape from CTL recognition. J Exp Med. 1994 Sep 1;180(3):779–782. [PMC free article] [PubMed]
  • Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, Farthing C, Ho DD. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. [PMC free article] [PubMed]
  • Lin YL, Askonas BA. Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replication in vivo and induction of delayed-type hypersensitivity reactions. J Exp Med. 1981 Aug 1;154(2):225–234. [PMC free article] [PubMed]
  • McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N Engl J Med. 1983 Jul 7;309(1):13–17. [PubMed]
  • Ungphakorn J, Sittitrai W. The Thai response to the HIV/AIDS epidemic. AIDS. 1994;8 (Suppl 2):S155–S163. [PubMed]
  • Meyerhans A, Cheynier R, Albert J, Seth M, Kwok S, Sninsky J, Morfeldt-Månson L, Asjö B, Wain-Hobson S. Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell. 1989 Sep 8;58(5):901–910. [PubMed]
  • Meyerhans A, Dadaglio G, Vartanian JP, Langlade-Demoyen P, Frank R, Asjö B, Plata F, Wain-Hobson S. In vivo persistence of a HIV-1-encoded HLA-B27-restricted cytotoxic T lymphocyte epitope despite specific in vitro reactivity. Eur J Immunol. 1991 Oct;21(10):2637–2640. [PubMed]
  • Moore JP. HIV vaccines. Back to primary school. Nature. 1995 Jul 13;376(6536):115–115. [PubMed]
  • Orentas RJ, Hildreth JE, Obah E, Polydefkis M, Smith GE, Clements ML, Siliciano RF. Induction of CD4+ human cytolytic T cells specific for HIV-infected cells by a gp160 subunit vaccine. Science. 1990 Jun 8;248(4960):1234–1237. [PubMed]
  • Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, Ogunlesi AO, Elvin JG, Rothbard JA, Bangham CR, Rizza CR, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 1991 Dec 12;354(6353):453–459. [PubMed]
  • Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH. CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol. 1987 Oct;61(10):3102–3108. [PMC free article] [PubMed]
  • Redfield RR, Birx DL, Ketter N, Tramont E, Polonis V, Davis C, Brundage JF, Smith G, Johnson S, Fowler A, et al. A phase I evaluation of the safety and immunogenicity of vaccination with recombinant gp160 in patients with early human immunodeficiency virus infection. Military Medical Consortium for Applied Retroviral Research. N Engl J Med. 1991 Jun 13;324(24):1677–1684. [PubMed]
  • Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991 Sep 1;78(5):1373–1380. [PubMed]
  • Riviere Y, Tanneau-Salvadori F, Regnault A, Lopez O, Sansonetti P, Guy B, Kieny MP, Fournel JJ, Montagnier L. Human immunodeficiency virus-specific cytotoxic responses of seropositive individuals: distinct types of effector cells mediate killing of targets expressing gag and env proteins. J Virol. 1989 May;63(5):2270–2277. [PMC free article] [PubMed]
  • Safrit JT, Andrews CA, Zhu T, Ho DD, Koup RA. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous virus sequences within a conserved immunodominant epitope. J Exp Med. 1994 Feb 1;179(2):463–472. [PMC free article] [PubMed]
  • Sethi KK, Näher H, Stroehmann I. Phenotypic heterogeneity of cerebrospinal fluid-derived HIV-specific and HLA-restricted cytotoxic T-cell clones. Nature. 1988 Sep 8;335(6186):178–181. [PubMed]
  • Stanhope PE, Liu AY, Pavlat W, Pitha PM, Clements ML, Siliciano RF. An HIV-1 envelope protein vaccine elicits a functionally complex human CD4+ T cell response that includes cytolytic T lymphocytes. J Immunol. 1993 May 15;150(10):4672–4686. [PubMed]
  • Walker BD, Chakrabarti S, Moss B, Paradis TJ, Flynn T, Durno AG, Blumberg RS, Kaplan JC, Hirsch MS, Schooley RT. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987 Jul 23;328(6128):345–348. [PubMed]
  • Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science. 1993 Aug 27;261(5125):1179–1181. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)