Search tips
Search criteria 


Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. 1996 December; 70(12): 8355–8360.
PMCID: PMC190923

Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry.


A panel of primary syncytium-inducing (SI) human immunodeficiency virus type 1 isolates that infected several CD4+ T-cell lines, including MT-2 and C8166, were tested for infection of blood-derived macrophages. Infectivity titers for C8166 cells and macrophages demonstrated that primary SI strains infected macrophages much more efficiently than T-cell line-adapted HIV-1 strains such as LAI and RF. These primary SI strains were therefore dual-tropic. Nine biological clones of two SI strains, prepared by limiting dilution, had macrophage/C8166 infectivity ratios similar to those of their parental viruses, indicating that the dual-tropic phenotype was not due to a mixture of non-SI/macrophage-tropic and SI/T-cell tropic viruses. We tested whether the primary SI strains used either Lestr (fusin) or CCR5 as coreceptors. Infection of cat CCC/CD4 cells transiently expressing Lestr supported infection by T-cell line-adapted strains including LAI, whereas CCC/CD4 cells expressing CCR5 were sensitive to primary non-SI strains as well as to the molecularly cloned strains SF-162 and JR-CSF. Several primary SI strains, as well as the molecularly cloned dual-tropic viruses 89.6 and GUN-1, infected both Lestr+ and CCR5+ CCC/CD4 cells. Thus, these viruses can choose between Lestr and CCR5 for entry into cells. Interestingly, some dual-tropic primary SI strains that infected Lestr+ cells failed to infect CCR5+ cells, suggesting that these viruses may use an alternative coreceptor for infection of macrophages. Alternatively, CCR5 may be processed or presented differently on cat cells so that entry of some primary SI strains but not others is affected.

Full Text

The Full Text of this article is available as a PDF (225K).

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)