PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
 
J Virol. 1996 October; 70(10): 7260–7263.
PMCID: PMC190785

Clonal propagation of Epstein-Barr virus (EBV) recombinants in EBV-negative Akata cells.

Abstract

We lack a host cell supporting an efficient lytic replication of Epstein-Barr virus (EBV). Recently, we isolated EBV-negative cell clones from the Akata cell line (referred as Akata- [N. Shimizu, A. Tanabe-Tochikura, Y. Kuroiwa, and K. Takada, J. Virol. 68:6069-6073, 1994). Since the parental Akata line is one of the highest EBV producers, we examined whether Akata- cells had become a good host for EBV propagation. The parental Akata cells have about 20 copies of EBV plasmid per cell. A drug resistance gene was inserted into one of them by homologous recombination. The resultant virus preparation, a mixture of wild-type and recombinant EBV, was used to infect Akata- cells. After incubation in the selective medium, drug-resistant Akata- cell clones were isolated and proved to be infected with recombinant EBV only. By treatment of the cells with antiimmunoglobulin antibodies, a large amount of recombinant EBV (i.e., more than 10 microg/1-liter culture) was produced. In contrast, three other B-lymphoma lines, BJAB, Ramos, and Louckes, were nonpermissive for virus replication. These results indicate that Akata- cells are suitable for propagation of recombinant EBV clonally, which becomes a powerful tool for determining EBV genetics and which makes it possible to use EBV as a vector for gene therapy.

Full Text

The Full Text of this article is available as a PDF (301K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Séguin C, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. [PubMed]
  • Bloss TA, Sugden B. Optimal lengths for DNAs encapsidated by Epstein-Barr virus. J Virol. 1994 Dec;68(12):8217–8222. [PMC free article] [PubMed]
  • Chevallier-Greco A, Manet E, Chavrier P, Mosnier C, Daillie J, Sergeant A. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J. 1986 Dec 1;5(12):3243–3249. [PubMed]
  • Cohen JI, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9558–9562. [PubMed]
  • Countryman J, Miller G. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4085–4089. [PubMed]
  • Dolyniuk M, Pritchett R, Kieff E. Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol. 1976 Mar;17(3):935–949. [PMC free article] [PubMed]
  • Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 1989 Aug 3;340(6232):393–397. [PubMed]
  • Klein G, Giovanella B, Westman A, Stehlin JS, Mumford D. An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology. 1975;5(6):319–334. [PubMed]
  • Klein G, Lindahl T, Jondal M, Leibold W, Menézes J, Nilsson K, Sundström C. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3283–3286. [PubMed]
  • Korman AJ, Frantz JD, Strominger JL, Mulligan RC. Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2150–2154. [PubMed]
  • Lee MA, Yates JL. BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. J Virol. 1992 Apr;66(4):1899–1906. [PMC free article] [PubMed]
  • Marchini A, Longnecker R, Kieff E. Epstein-Barr virus (EBV)-negative B-lymphoma cell lines for clonal isolation and replication of EBV recombinants. J Virol. 1992 Aug;66(8):4972–4981. [PMC free article] [PubMed]
  • Miller N, Hutt-Fletcher LM. A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J Virol. 1988 Jul;62(7):2366–2372. [PMC free article] [PubMed]
  • Robertson ES, Tomkinson B, Kieff E. An Epstein-Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro. J Virol. 1994 Mar;68(3):1449–1458. [PMC free article] [PubMed]
  • Shimizu N, Tanabe-Tochikura A, Kuroiwa Y, Takada K. Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J Virol. 1994 Sep;68(9):6069–6073. [PMC free article] [PubMed]
  • Takada K. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer. 1984 Jan 15;33(1):27–32. [PubMed]
  • Takada K, Fujiwara S, Yano S, Osato T. Monoclonal antibody specific for capsid antigen of Epstein-Barr virus. Med Microbiol Immunol. 1983;171(4):225–231. [PubMed]
  • Takada K, Horinouchi K, Ono Y, Aya T, Osato T, Takahashi M, Hayasaka S. An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes. 1991 Apr;5(2):147–156. [PubMed]
  • Takada K, Ono Y. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol. 1989 Jan;63(1):445–449. [PMC free article] [PubMed]
  • Takada K, Shimizu N, Sakuma S, Ono Y. trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol. 1986 Mar;57(3):1016–1022. [PMC free article] [PubMed]
  • Tomkinson B, Kieff E. Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J Virol. 1992 Feb;66(2):780–789. [PMC free article] [PubMed]
  • Tomkinson B, Robertson E, Yalamanchili R, Longnecker R, Kieff E. Epstein-Barr virus recombinants from overlapping cosmid fragments. J Virol. 1993 Dec;67(12):7298–7306. [PMC free article] [PubMed]
  • van Santen V, Cheung A, Kieff E. Epstein-Barr virus RNA VII: size and direction of transcription of virus-specified cytoplasmic RNAs in a transformed cell line. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1930–1934. [PubMed]
  • Yoshiyama H, Shimizu N, Takada K. Persistent Epstein-Barr virus infection in a human T-cell line: unique program of latent virus expression. EMBO J. 1995 Aug 1;14(15):3706–3711. [PubMed]
  • zur Hausen H, O'Neill FJ, Freese UK, Hecker E. Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature. 1978 Mar 23;272(5651):373–375. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)