PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
 
J Clin Invest. 1995 July; 96(1): 50–59.
PMCID: PMC185172

Inhibition of calcitriol receptor binding to vitamin D response elements by uremic toxins.

Abstract

The genomic action of calcitriol (1,25-dihydroxy-vitamin D3) is mediated through the interaction of the calcitriol receptor (VDR) with vitamin D response elements (VDREs). Although renal failure is associated with resistance to the action of calcitriol, the mechanism of this resistance is not well understood. Therefore, we used the electrophoretic mobility shift assay to compare the ability of VDRs from normal and renal failure rats to bind to the osteocalcin gene VDRE. The results indicate that VDRs from renal failure rats have only half the DNA binding capacity as VDRs from control rats, despite identical calcitriol binding. Furthermore, incubation of normal VDRs with a uremic plasma ultrafiltrate resulted in a loss of > 50% of the binding sites for the osteocalcin VDRE. When VDRs bound to DNA as heterodimers with retinoid X receptors, the inhibitory effect of the uremic ultrafiltrate was due to a specific interaction with the VDR, not retinoid X receptors. In addition, uremic ultrafiltrate blocked calcitriol-induced reporter gene activity in transfected JEG-3 cells. Taken together, the results indicate that an inhibitory effect of a uremic toxin(s) on VDR-VDRE binding could underlie the calcitriol resistance of renal failure.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • O'Malley B. The steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol. 1990 Mar;4(3):363–369. [PubMed]
  • Pike JW. Emerging concepts on the biologic role and mechanism of action of 1,25-dihydroxyvitamin D3. Steroids. 1987 Jan-Mar;49(1-3):3–27. [PubMed]
  • Walling MW, Kimberg DV, Wasserman RH, Feinberg RR. Duodenal active transport of calcium and phosphate in vitamin D-deficient rats: effects of nephrectomy, Cestrum diurnum, and 1alpha,25-dihydroxyvitamin D3. Endocrinology. 1976 May;98(5):1130–1134. [PubMed]
  • Fukagawa M, Kaname S, Igarashi T, Ogata E, Kurokawa K. Regulation of parathyroid hormone synthesis in chronic renal failure in rats. Kidney Int. 1991 May;39(5):874–881. [PubMed]
  • Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989 Aug;36(2):234–239. [PubMed]
  • Patel SR, Ke HQ, Hsu CH. Effect of vitamin D metabolites on calcitriol degradative enzymes in renal failure. Kidney Int. 1994 Feb;45(2):509–514. [PubMed]
  • Hsu CH, Patel SR, Young EW. Mechanism of decreased calcitriol degradation in renal failure. Am J Physiol. 1992 Feb;262(2 Pt 2):F192–F198. [PubMed]
  • Hsu CH, Patel SR, Vanholder R. Mechanism of decreased intestinal calcitriol receptor concentration in renal failure. Am J Physiol. 1993 Apr;264(4 Pt 2):F662–F669. [PubMed]
  • Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O'Malley BW. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science. 1988 Dec 23;242(4886):1702–1705. [PubMed]
  • Sone T, Scott RA, Hughes MR, Malloy PJ, Feldman D, O'Malley BW, Pike JW. Mutant vitamin D receptors which confer hereditary resistance to 1,25-dihydroxyvitamin D3 in humans are transcriptionally inactive in vitro. J Biol Chem. 1989 Dec 5;264(34):20230–20234. [PubMed]
  • Malloy PJ, Hochberg Z, Pike JW, Feldman D. Abnormal binding of vitamin D receptors to deoxyribonucleic acid in a kindred with vitamin D-dependent rickets, type II. J Clin Endocrinol Metab. 1989 Feb;68(2):263–269. [PubMed]
  • Ross TK, Moss VE, Prahl JM, DeLuca HF. A nuclear protein essential for binding of rat 1,25-dihydroxyvitamin D3 receptor to its response elements. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):256–260. [PubMed]
  • Sone T, Kerner S, Pike JW. Vitamin D receptor interaction with specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulated heterodimer. J Biol Chem. 1991 Dec 5;266(34):23296–23305. [PubMed]
  • Hsu CH, Vanholder R, Patel S, De Smet RR, Sandra P, Ringoir SM. Subfractions in uremic plasma ultrafiltrate inhibit calcitriol metabolism. Kidney Int. 1991 Nov;40(5):868–873. [PubMed]
  • Hirst M, Feldman D. Cleavage of the rat intestinal 1,25-dihydroxyvitamin D3 receptor by an endogenous protease to a form with defective DNA binding. Arch Biochem Biophys. 1986 Oct;250(1):153–161. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Characterization of 1,25-dihydroxyvitamin D3 receptor interactions with target sequences in the rat osteocalcin gene. Mol Endocrinol. 1992 Apr;6(4):557–562. [PubMed]
  • Liao J, Ozono K, Sone T, McDonnell DP, Pike JW. Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9751–9755. [PubMed]
  • Jurutka PW, Hsieh JC, MacDonald PN, Terpening CM, Haussler CA, Haussler MR, Whitfield GK. Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells. J Biol Chem. 1993 Mar 25;268(9):6791–6799. [PubMed]
  • Noda M, Vogel RL, Craig AM, Prahl J, DeLuca HF, Denhardt DT. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9995–9999. [PubMed]
  • Subauste JS, Katz RW, Koenig RJ. DNA binding specificity and function of retinoid X receptor alpha. J Biol Chem. 1994 Dec 2;269(48):30232–30237. [PubMed]
  • Rosen ED, Beninghof EG, Koenig RJ. Dimerization interfaces of thyroid hormone, retinoic acid, vitamin D, and retinoid X receptors. J Biol Chem. 1993 Jun 5;268(16):11534–11541. [PubMed]
  • Cake MH, DiSorbo DM, Litwack G. Effect of pyridoxal phosphate on the DNA binding site of activated hepatic glucocorticoid receptor. J Biol Chem. 1978 Jul 25;253(14):4886–4891. [PubMed]
  • Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D, Zambetti G, Stein G. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1143–1147. [PubMed]
  • Kerner SA, Scott RA, Pike JW. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4455–4459. [PubMed]
  • Szabo A, Merke J, Thomasset M, Ritz E. No decrease of 1,25(OH)2D3 receptors and duodenal calbindin-D9k in uraemic rats. Eur J Clin Invest. 1991 Oct;21(5):521–526. [PubMed]
  • Allegretto EA, Pike JW. Trypsin cleavage of chick 1,25-dihydroxyvitamin D3 receptors. Generation of discrete polypeptides which retain hormone but are unreactive to DNA and monoclonal antibody. J Biol Chem. 1985 Aug 25;260(18):10139–10145. [PubMed]
  • Allegretto EA, Pike JW, Haussler MR. Immunochemical detection of unique proteolytic fragments of the chick 1,25-dihydroxyvitamin D3 receptor. Distinct 20-kDa DNA-binding and 45-kDa hormone-binding species. J Biol Chem. 1987 Jan 25;262(3):1312–1319. [PubMed]
  • Pike JW. Evidence for a reactive sulfhydryl in the DNA binding domain of the 1,25-dihydroxyvitamin D3 receptor. Biochem Biophys Res Commun. 1981 Jun;100(4):1713–1719. [PubMed]
  • Müller RE, Traish A, Wotiz HH. Effects of pyridoxal 5'-phosphate on uterine estrogen receptor. I. Inhibition of nuclear binding in cell-free system and intact uterus. J Biol Chem. 1980 May 10;255(9):4062–4067. [PubMed]
  • Mulder E, Vrij L, Foekens JA. Inhibition of nucleic acid and chromatin binding of the rat prostate androgen receptor by pyridoxal phosphate, heparin and Cibacron blue. Steroids. 1980 Dec;36(6):633–645. [PubMed]
  • Nishigori H, Toft D. Chemical modification of the avian progesterone receptor by pyridoxal 5'-phosphate. J Biol Chem. 1979 Sep 25;254(18):9155–9161. [PubMed]
  • Nakajima S, Hsieh JC, MacDonald PN, Galligan MA, Haussler CA, Whitfield GK, Haussler MR. The C-terminal region of the vitamin D receptor is essential to form a complex with a receptor auxiliary factor required for high affinity binding to the vitamin D-responsive element. Mol Endocrinol. 1994 Feb;8(2):159–172. [PubMed]
  • Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippo JF, Hunziker W. Two nuclear signalling pathways for vitamin D. Nature. 1993 Feb 18;361(6413):657–660. [PubMed]
  • Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature. 1992 Jan 30;355(6359):446–449. [PubMed]
  • Patel SR, Ke HQ, Vanholder R, Hsu CH. Inhibition of nuclear uptake of calcitriol receptor by uremic ultrafiltrate. Kidney Int. 1994 Jul;46(1):129–133. [PubMed]
  • Korkor AB. Reduced binding of [3H]1,25-dihydroxyvitamin D3 in the parathyroid glands of patients with renal failure. N Engl J Med. 1987 Jun 18;316(25):1573–1577. [PubMed]
  • Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993 Sep;92(3):1436–1443. [PMC free article] [PubMed]
  • McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O'Malley BW. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science. 1987 Mar 6;235(4793):1214–1217. [PubMed]
  • Wiese RJ, Uhland-Smith A, Ross TK, Prahl JM, DeLuca HF. Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem. 1992 Oct 5;267(28):20082–20086. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation