Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1991 December; 57(12): 3648–3651.
PMCID: PMC184028

Ecological implications of glucosyltransferase phase variation in Streptococcus gordonii.


When sucrose is provided as a substrate for glucosyltransferase (GTF), Spp+ cells of the oral bacteria Streptococcus gordonii grow embedded in an insoluble glucan mass associated with surfaces. Spp- phase variants with lower GTF activity, which either arise from or are grown with Spp+ cells, segregate preferentially as unattached cells in the culture supernatants. Conversely, Spp+ revertants preferentially accumulate on surfaces. GTF phase variation, therefore, may facilitate the dispersion of S. gordonii cells throughout the oral cavity.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (787K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Belas R, Simon M, Silverman M. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol. 1986 Jul;167(1):210–218. [PMC free article] [PubMed]
  • de Stoppelaar JD, van Houte J, de Moor CE. The presence of dextran-forming bacteria, resembling Streptococcus bovis and Streptococcus anguis, in human dental plaque. Arch Oral Biol. 1967 Oct;12(10):1199–1202. [PubMed]
  • Facklam RR. Physiological differentiation of viridans streptococci. J Clin Microbiol. 1977 Feb;5(2):184–201. [PMC free article] [PubMed]
  • Frandsen EV, Pedrazzoli V, Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol. 1991 Jun;6(3):129–133. [PubMed]
  • Gibbons RJ, Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968 Oct;13(10):1249–1262. [PubMed]
  • Gibbons RJ, Houte JV. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol. 1975;29:19–44. [PubMed]
  • Hudson MC, Curtiss R., 3rd Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun. 1990 Feb;58(2):464–470. [PMC free article] [PubMed]
  • Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. [PMC free article] [PubMed]
  • Mayer RM. Dextransucrase: a glucosyltransferase from Streptococcus sanguis. Methods Enzymol. 1987;138:649–661. [PubMed]
  • Niven CF, Kiziuta Z, White JC. Synthesis of a Polysaccharide from Sucrose by Streptococcus S.B.E. J Bacteriol. 1946 Jun;51(6):711–716. [PMC free article] [PubMed]
  • Nyvad B, Kilian M. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 1990;24(4):267–272. [PubMed]
  • Russell RR. Use of triton X-100 to overcome the inhibition of fructosyltransferase by SDS. Anal Biochem. 1979 Aug;97(1):173–175. [PubMed]
  • Seifert HS, So M. Genetic mechanisms of bacterial antigenic variation. Microbiol Rev. 1988 Sep;52(3):327–336. [PMC free article] [PubMed]
  • Tardif G, Sulavik MC, Jones GW, Clewell DB. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun. 1989 Dec;57(12):3945–3948. [PMC free article] [PubMed]
  • Terleckyj B, Willett NP, Shockman GD. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. [PMC free article] [PubMed]
  • Vickerman MM, Clewell DB, Jones GW. Sucrose-promoted accumulation of growing glucosyltransferase variants of Streptococcus gordonii on hydroxyapatite surfaces. Infect Immun. 1991 Oct;59(10):3523–3530. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)