Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1993 November; 59(11): 3763–3770.
PMCID: PMC182529

Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200.


Shewanella putrefaciens 200 is an obligate respiratory bacterium that can utilize a variety of terminal electron acceptors, e.g., NO3-, NO2-, Fe(III), and trimethylamine N-oxide, in the absence of O2. The bacterium catalyzed the reductive transformation of tetrachloromethane (CT) under anaerobic conditions. The only identified product was trichloromethane (CF), but CF production was not stoichiometric. No dichloromethane, chloromethane, or methane was produced. A chloride mass balance indicated that fully dechlorinated products were not formed. Studies with [14C]CT suggested that a portion of the transformed CT reacted with biomass to form unidentified soluble and insoluble products. Intermediate production of a trichloromethyl radical can explain observed product distribution without significant CO2 formation. Evidence suggests that respiratory c-type cytochromes are responsible for the dehalogenation ability of S. putrefaciens 200. Previous growth under microaerobic conditions ([O2], < 2.5 microM) results in (i) a 2.6-fold increase in specific heme c content and (ii) a 2.3-fold increase in specific rates of anaerobic CT transformation. Manipulation of heme content by growth on iron-free medium or medium amended with delta-aminolevulinic acid showed that CT transformation rates increase with increases in specific heme c content. Transformation of CT is inhibited by CO. Dehalogenation studies with periplasmic, cytoplasmic, and membrane fractions indicated that only periplasmic and membrane fractions possessed dehalogenation ability. Cytochromes c were the predominant cytochromes present. Membranes were also found to contain smaller amounts of cytochrome b. Observed CT transformation patterns are consistent with a cometabolic description involving fortuitous CT reduction by reduced c-type cytochromes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arnold RG, DiChristina TJ, Hoffmann MR. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ("Pseudomonas ferrireductans") Appl Environ Microbiol. 1986 Aug;52(2):281–289. [PMC free article] [PubMed]
  • Assaf-Anid N, Nies L, Vogel TM. Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12. Appl Environ Microbiol. 1992 Mar;58(3):1057–1060. [PMC free article] [PubMed]
  • Bouwer EJ, McCarty PL. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol. 1983 Apr;45(4):1286–1294. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Castro CE, Wade RS, Belser NO. Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry. 1985 Jan 1;24(1):204–210. [PubMed]
  • Criddle CS, DeWitt JT, Grbić-Galić D, McCarty PL. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol. 1990 Nov;56(11):3240–3246. [PMC free article] [PubMed]
  • Criddle CS, DeWitt JT, McCarty PL. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. Appl Environ Microbiol. 1990 Nov;56(11):3247–3254. [PMC free article] [PubMed]
  • DeWeerd KA, Concannon F, Suflita JM. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. [PMC free article] [PubMed]
  • Deweerd KA, Suflita JM. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of "Desulfomonile tiedjei". Appl Environ Microbiol. 1990 Oct;56(10):2999–3005. [PMC free article] [PubMed]
  • Dolfing J. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol. 1990;153(3):264–266. [PubMed]
  • Doss M, Philipp-Dormston WK. Regulatory link between lactate dehydrogenase and biosynthesis of porphyrin and heme in microorganisms. Enzyme. 1973;16(1):28–41. [PubMed]
  • Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol. 1988 Nov;54(11):2819–2824. [PMC free article] [PubMed]
  • Gälli R, McCarty PL. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl Environ Microbiol. 1989 Apr;55(4):837–844. [PMC free article] [PubMed]
  • Holliger C, Kengen SW, Schraa G, Stams AJ, Zehnder AJ. Methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum delta H catalyzes the reductive dechlorination of 1,2-dichloroethane to ethylene and chloroethane. J Bacteriol. 1992 Jul;174(13):4435–4443. [PMC free article] [PubMed]
  • Holliger C, Schraa G, Stupperich E, Stams AJ, Zehnder AJ. Evidence for the involvement of corrinoids and factor F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. J Bacteriol. 1992 Jul;174(13):4427–4434. [PMC free article] [PubMed]
  • Krone UE, Laufer K, Thauer RK, Hogenkamp HP. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry. 1989 Dec 26;28(26):10061–10065. [PubMed]
  • Krone UE, Thauer RK, Hogenkamp HP, Steinbach K. Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry. 1991 Mar 12;30(10):2713–2719. [PubMed]
  • Lanyi JK. Studies of the electron transport chain of extremely halophilic bacteria. I. Spectrophotometric identification of the cytochromes of Halobacterium cutirubrum. Arch Biochem Biophys. 1968 Dec;128(3):716–724. [PubMed]
  • Linkfield TG, Tiedje JM. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J Ind Microbiol. 1990 Jan;5(1):9–15. [PubMed]
  • Meyer TE, Przysiecki CT, Watkins JA, Bhattacharyya A, Simondsen RP, Cusanovich MA, Tollin G. Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanisms of electron transfer proteins. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6740–6744. [PubMed]
  • Morris CJ, Gibson DM, Ward FB. Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens. FEMS Microbiol Lett. 1990 Jun 1;57(3):259–262. [PubMed]
  • Myers CR, Myers JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol. 1992 Jun;174(11):3429–3438. [PMC free article] [PubMed]
  • Obuekwe CO, Westlake DW. Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil. Can J Microbiol. 1982 Aug;28(8):989–992. [PubMed]
  • Obuekwe CO, Westlake DW, Cook FD. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can J Microbiol. 1981 Jul;27(7):692–697. [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)