PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
 
Appl Environ Microbiol. Oct 1993; 59(10): 3350–3359.
PMCID: PMC182458
Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex.
U Jenal-Wanner and T Egli
Institute for Aquatic Sciences and Water Pollution Control, Swiss Federal Institute of Technology, Zurich ETHZ.
Abstract
The initial step in the anoxic metabolism of nitrilotriacetate (NTA) was investigated in a denitrifying member of the gamma subgroup of the Proteobacteria. In membrane-free cell extracts, the first step of NTA oxidation was catalyzed by a protein complex consisting of two enzymes, NTA dehydrogenase (NTADH) and nitrate reductase (NtR). The products formed were iminodiacetate and glyoxylate. Electrons derived from the oxidation of NTA were transferred to nitrate only via the artificial dye phenazine methosulfate, and nitrate was stoichiometrically reduced to nitrite. NTADH activity could be measured only in the presence of NtrR and vice versa. The NTADH-NtrR enzyme complex was purified and characterized. NTADH and NtrR were both alpha 2 dimers and had molecular weights of 170,000 and 105,000, respectively. NTADH contained covalently bound flavin cofactor, and NtrR contained a type b cytochrome. Optimum NTA-oxidizing activity was achieved at a molar ratio of NTADH to NtrR of approximately 1:1. So far, NTA is the only known substrate for NTADH. This is the first report of a redox enzyme complex catalyzing the oxidation of a substrate and concomitantly reducing nitrate.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page.
Images in this article
Click on the image to see a larger version.
Articles from Applied and Environmental Microbiology are provided here courtesy of
American Society for Microbiology (ASM)