Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1993 May; 59(5): 1354–1360.
PMCID: PMC182089

Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms.


We describe the in situ use of rRNA-targeted fluorescent hybridization probes in combination with digital microscopy to quantify the cellular content of ribosomes in relationship to the growth rate of single cells of a specific population of sulfate-reducing bacteria in multispecies anaerobic biofilms. Using this technique, we inferred that this population was growing with an average generation time of 35 h in a young biofilm, whereas the doubling time in an established biofilm was significantly longer. Conventional chemical determinations of the RNA, DNA, and protein contents of this culture at different growth rates were also carried out, and the resulting data were compared with the rRNA fluorescence in situ hybridization data.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. [PMC free article] [PubMed]
  • Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. [PMC free article] [PubMed]
  • Amann RI, Stromley J, Devereux R, Key R, Stahl DA. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol. 1992 Feb;58(2):614–623. [PMC free article] [PubMed]
  • Kane MD, Poulsen LK, Stahl DA. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol. 1993 Mar;59(3):682–686. [PMC free article] [PubMed]
  • Mikkola R, Kurland CG. Evidence for demand-regulation of ribosome accumulation in E coli. Biochimie. 1991 Dec;73(12):1551–1556. [PubMed]
  • Mikkola R, Kurland CG. Selection of laboratory wild-type phenotype from natural isolates of Escherichia coli in chemostats. Mol Biol Evol. 1992 May;9(3):394–402. [PubMed]
  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337–365. [PubMed]
  • Postgate JR, Kent HM, Robson RL, Chesshyre JA. The genomes of Desulfovibrio gigas and D. vulgaris. J Gen Microbiol. 1984 Jul;130(7):1597–1601. [PubMed]
  • Rosset R, Julien J, Monier R. Ribonucleic acid composition of bacteria as a function of growth rate. J Mol Biol. 1966 Jul;18(2):308–320. [PubMed]
  • SCHAECHTER M, MAALOE O, KJELDGAARD NO. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):592–606. [PubMed]
  • Skarstad K, Steen HB, Boye E. Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol. 1983 May;154(2):656–662. [PMC free article] [PubMed]
  • Viles CL, Sieracki ME. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy. Appl Environ Microbiol. 1992 Feb;58(2):584–592. [PMC free article] [PubMed]
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)