Search tips
Search criteria 


Logo of aacPermissionsJournals.ASM.orgJournalAAC ArticleJournal InfoAuthorsReviewers
Antimicrob Agents Chemother. 1985 October; 28(4): 581–586.
PMCID: PMC180310

The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aznar J, Caballero MC, Lozano MC, de Miguel C, Palomares JC, Perea EJ. Activities of new quinoline derivatives against genital pathogens. Antimicrob Agents Chemother. 1985 Jan;27(1):76–78. [PMC free article] [PubMed]
  • Bailey JM, Heppleston C, Richmond SJ. Comparison of the in vitro activities of ofloxacin and tetracycline against Chlamydia trachomatis as assessed by indirect immunofluorescence. Antimicrob Agents Chemother. 1984 Jul;26(1):13–16. [PMC free article] [PubMed]
  • Barry AL, Jones RN. Cross-resistance among cinoxacin, ciprofloxacin, DJ-6783, enoxacin, nalidixic acid, norfloxacin, and oxolinic acid after in vitro selection of resistant populations. Antimicrob Agents Chemother. 1984 Jun;25(6):775–777. [PMC free article] [PubMed]
  • Barry AL, Jones RN, Thornsberry C, Ayers LW, Gerlach EH, Sommers HM. Antibacterial activities of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin, and nalidixic acid. Antimicrob Agents Chemother. 1984 May;25(5):633–637. [PMC free article] [PubMed]
  • Borobio MV, Perea EJ. Effect of inoculum, pH, and medium on the activity of ciprofloxacin against anaerobic bacteria. Antimicrob Agents Chemother. 1984 Mar;25(3):342–343. [PMC free article] [PubMed]
  • Burman LG. R-plasmid transfer and its response to nalidixic acid. J Bacteriol. 1977 Jul;131(1):76–81. [PMC free article] [PubMed]
  • Burman LG. Apparent absence of transferable resistance to nalidixic acid in pathogenic Gram-negative bacteria. J Antimicrob Chemother. 1977 Sep;3(5):509–516. [PubMed]
  • Chin NX, Neu HC. In vitro activity of enoxacin, a quinolone carboxylic acid, compared with those of norfloxacin, new beta-lactams, aminoglycosides, and trimethoprim. Antimicrob Agents Chemother. 1983 Nov;24(5):754–763. [PMC free article] [PubMed]
  • Chin NX, Neu HC. Ciprofloxacin, a quinolone carboxylic acid compound active against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 1984 Mar;25(3):319–326. [PMC free article] [PubMed]
  • Clarke AM, Zemcov SJ, Campbell ME. In-vitro activity of pefloxacin compared to enoxacin, norfloxacin, gentamicin and new beta-lactams. J Antimicrob Chemother. 1985 Jan;15(1):39–44. [PubMed]
  • Cornett JB, Wagner RB, Dobson RA, Wentland MP, Bailey DM. In vitro and in vivo antibacterial activities of the fluoroquinolone WIN 49375 (amifloxacin). Antimicrob Agents Chemother. 1985 Jan;27(1):4–10. [PMC free article] [PubMed]
  • Cozzarelli NR. DNA gyrase and the supercoiling of DNA. Science. 1980 Feb 29;207(4434):953–960. [PubMed]
  • Crumplin GC, Kenwright M, Hirst T. Investigations into the mechanism of action of the antibacterial agent norfloxacin. J Antimicrob Chemother. 1984 May;13 (Suppl B):9–23. [PubMed]
  • Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrob Agents Chemother. 1975 Sep;8(3):251–261. [PMC free article] [PubMed]
  • Cullmann W, Stieglitz M, Baars B, Opferkuch W. Comparative evaluation of recently developed quinolone compounds--with a note on the frequency of resistant mutants. Chemotherapy. 1985;31(1):19–28. [PubMed]
  • Deitz WH, Cook TM, Goss WA. Mechanism of action of nalidixic acid on Escherichia coli. 3. Conditions required for lethality. J Bacteriol. 1966 Feb;91(2):768–773. [PMC free article] [PubMed]
  • Drlica K. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev. 1984 Dec;48(4):273–289. [PMC free article] [PubMed]
  • Eliopoulos GM, Gardella A, Moellering RC., Jr In vitro activity of ciprofloxacin, a new carboxyquinoline antimicrobial agent. Antimicrob Agents Chemother. 1984 Mar;25(3):331–335. [PMC free article] [PubMed]
  • Fass RJ. In vitro activity of ciprofloxacin (Bay o 9867). Antimicrob Agents Chemother. 1983 Oct;24(4):568–574. [PMC free article] [PubMed]
  • Fass RJ. The quinolones. Ann Intern Med. 1985 Mar;102(3):400–402. [PubMed]
  • Garcia I, Bodey GP, Fainstein V, Ho DH, LeBlanc B. In vitro activity of WIN 49375 compared with those of other antibiotics in isolates from cancer patients. Antimicrob Agents Chemother. 1984 Sep;26(3):421–423. [PMC free article] [PubMed]
  • Gay JD, DeYoung DR, Roberts GD. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M. chelonei, M. fortuitum, and M. kansasii. Antimicrob Agents Chemother. 1984 Jul;26(1):94–96. [PMC free article] [PubMed]
  • Gellert M. DNA topoisomerases. Annu Rev Biochem. 1981;50:879–910. [PubMed]
  • Gombert ME, Aulicino TM. Susceptibility of multiply antibiotic-resistant pneumococci to the new quinoline antibiotics, nalidixic acid, coumermycin, and novobiocin. Antimicrob Agents Chemother. 1984 Dec;26(6):933–934. [PMC free article] [PubMed]
  • Goodman LJ, Fliegelman RM, Trenholme GM, Kaplan RL. Comparative in vitro activity of ciprofloxacin against Campylobacter spp. and other bacterial enteric pathogens. Antimicrob Agents Chemother. 1984 Apr;25(4):504–506. [PMC free article] [PubMed]
  • Goossens H, De Mol P, Coignau H, Levy J, Grados O, Ghysels G, Innocent H, Butzler JP. Comparative in vitro activities of aztreonam, ciprofloxacin, norfloxacin, ofloxacin, HR 810 (a new cephalosporin), RU28965 (a new macrolide), and other agents against enteropathogens. Antimicrob Agents Chemother. 1985 Mar;27(3):388–392. [PMC free article] [PubMed]
  • Guay DR. Cinoxacin (Cinobac, Eli Lilly & Co.). Drug Intell Clin Pharm. 1982 Dec;16(12):916–921. [PubMed]
  • Hane MW, Wood TH. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J Bacteriol. 1969 Jul;99(1):238–241. [PMC free article] [PubMed]
  • Heessen FW, Muytjens HL. In vitro activities of ciprofloxacin, norfloxacin, pipemidic acid, cinoxacin, and nalidixic acid against Chlamydia trachomatis. Antimicrob Agents Chemother. 1984 Jan;25(1):123–124. [PMC free article] [PubMed]
  • Ito A, Hirai K, Inoue M, Koga H, Suzue S, Irikura T, Mitsuhashi S. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob Agents Chemother. 1980 Feb;17(2):103–108. [PMC free article] [PubMed]
  • Jacobus NV, Tally FP, Barza M. Antimicrobial spectrum of Win 49375. Antimicrob Agents Chemother. 1984 Jul;26(1):104–107. [PMC free article] [PubMed]
  • Khan MY, Siddiqui Y, Gruninger RP. Comparative in vitro activity of Mk-0366 and other selected oral antimicrobial agents against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1981 Aug;20(2):265–266. [PMC free article] [PubMed]
  • King A, Shannon K, Phillips I. The in-vitro activity of ciprofloxacin compared with that of norfloxacin and nalidixic acid. J Antimicrob Chemother. 1984 Apr;13(4):325–331. [PubMed]
  • King A, Shannon K, Phillips I. The in-vitro activities of enoxacin and ofloxacin compared with that of ciprofloxacin. J Antimicrob Chemother. 1985 May;15(5):551–558. [PubMed]
  • Koga H, Itoh A, Murayama S, Suzue S, Irikura T. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem. 1980 Dec;23(12):1358–1363. [PubMed]
  • Krueger JH, Walker GC. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1499–1503. [PubMed]
  • Kumar S. Types of spontaneous nalidixic acid resistant mutants of Escherichia coli. Indian J Exp Biol. 1980 Apr;18(4):341–343. [PubMed]
  • Matsumoto J, Minami S. Pyrido(2,3-d)pyrimidine antibacterial agents. 3. 8-Alkyl- and 8-vinyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)pyrido(2,3-d)pyrimidine-6-carboxylic acids and their derivatives. J Med Chem. 1975 Jan;18(1):74–79. [PubMed]
  • Matsumoto J, Miyamoto T, Minamida A, Nishimura Y, Egawa H, Nishimura H. Pyridonecarboxylic acids as antibacterial agents. 2. Synthesis and structure-activity relationships of 1,6,7-trisubstituted 1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acids, including enoxacin, a new antibacterial agent. J Med Chem. 1984 Mar;27(3):292–301. [PubMed]
  • Muytjens HL, van der Ros-van de Repe J, van Veldhuizen G. Comparative activities of ciprofloxacin (Bay o 9867), norfloxacin, pipemidic acid, and nalidixic acid. Antimicrob Agents Chemother. 1983 Aug;24(2):302–304. [PMC free article] [PubMed]
  • Nakamura S, Inoue S, Shimizu M, Iyobe S, Mitsuhashi S. Inhibition of conjugal transfer of R plasmids by pipemidic acid and related compounds. Antimicrob Agents Chemother. 1976 Nov;10(5):779–785. [PMC free article] [PubMed]
  • Nakamura S, Minami A, Katae H, Inoue S, Yamagishi J, Takase Y, Shimizu M. In vitro antibacterial properties of AT-2266, a new pyridonecarboxylic acid. Antimicrob Agents Chemother. 1983 May;23(5):641–648. [PMC free article] [PubMed]
  • Neu HC, Chin NX, Labthavikul P. Antibacterial activity of coumermycin alone and in combination with other antibiotics. Antimicrob Agents Chemother. 1984 Jun;25(6):687–689. [PMC free article] [PubMed]
  • Neu HC, Labthavikul P. In vitro activity of norfloxacin, a quinolinecarboxylic acid, compared with that of beta-lactams, aminoglycosides, and trimethoprim. Antimicrob Agents Chemother. 1982 Jul;22(1):23–27. [PMC free article] [PubMed]
  • Osada Y, Ogawa H. Antimycoplasmal activity of ofloxacin (DL-8280). Antimicrob Agents Chemother. 1983 Mar;23(3):509–511. [PMC free article] [PubMed]
  • Peeters M, Van Dyck E, Piot P. In vitro activities of the spectinomycin analog U-63366 and four quinolone derivatives against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1984 Oct;26(4):608–609. [PMC free article] [PubMed]
  • Piffaretti JC, Demarta A, Leidi-Bulla L, Peduzzi R. In vitro emergence of Escherichia coli and Pseudomonas aeruginosa strains resistant to norfloxacin and nalidixic acid. Eur J Clin Microbiol. 1983 Dec;2(6):600–601. [PubMed]
  • Pohlod DJ, Saravolatz LD. In vitro susceptibilities of 393 recent clinical isolates to WIN 49375, cefotaxime, tobramycin, and piperacillin. Antimicrob Agents Chemother. 1984 Mar;25(3):377–379. [PMC free article] [PubMed]
  • Prabhala RH, Rao B, Marshall R, Bansal MB, Thadepalli H. In vitro susceptibility of anaerobic bacteria to ciprofloxacin (Bay o 9867). Antimicrob Agents Chemother. 1984 Nov;26(5):785–786. [PMC free article] [PubMed]
  • Reeves DS, Bywater MJ, Holt HA. The activity of enoxacin against clinical bacterial isolates in comparison with that of five other agents, and factors affecting that activity. J Antimicrob Chemother. 1984 Sep;14 (Suppl 100):7–17. [PubMed]
  • Reeves DS, Bywater MJ, Holt HA, White LO. In-vitro studies with ciprofloxacin, a new 4-quinolone compound. J Antimicrob Chemother. 1984 Apr;13(4):333–346. [PubMed]
  • Rella M, Haas D. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother. 1982 Aug;22(2):242–249. [PMC free article] [PubMed]
  • Ruckdeschel G, Ehret W, Ahl A. Susceptibility of Legionella spp. to quinolone derivatives and related organic acids. Eur J Clin Microbiol. 1984 Aug;3(4):373–373. [PubMed]
  • Sanders CC, Sanders WE, Jr, Goering RV, Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother. 1984 Dec;26(6):797–801. [PMC free article] [PubMed]
  • Sato K, Matsuura Y, Inoue M, Une T, Osada Y, Ogawa H, Mitsuhashi S. In vitro and in vivo activity of DL-8280, a new oxazine derivative. Antimicrob Agents Chemother. 1982 Oct;22(4):548–553. [PMC free article] [PubMed]
  • Seibert G, Limbert M, Klesel N. Comparison of the antibacterial in vitro and in vivo activity of ofloxacin (HOE 280 DL 8280) and nalidixic acid analogues. Eur J Clin Microbiol. 1983 Dec;2(6):548–553. [PubMed]
  • Shah PM, Ottrad M, Stille W. In vitro activity of norfloxacin in urine compared to that of cinnoxacin, nalidixic acid and pipemidic acid. Eur J Clin Microbiol. 1983 Jun;2(3):272–274. [PubMed]
  • Shen LL, Pernet AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proc Natl Acad Sci U S A. 1985 Jan;82(2):307–311. [PubMed]
  • Simon C, Lindner U. In vitro activity of norfloxacin against Mycoplasma hominis and Ureaplasma urealyticum. Eur J Clin Microbiol. 1983 Oct;2(5):479–480. [PubMed]
  • Sisca TS, Heel RC, Romankiewicz JA. Cinoxacin. A review of its pharmacological properties and therapeutic efficacy in the treatment of urinary tract infections. Drugs. 1983 Jun;25(6):544–569. [PubMed]
  • Smith GR. DNA supercoiling: another level for regulating gene expression. Cell. 1981 Jun;24(3):599–600. [PubMed]
  • Smith JT. Mutational resistance to 4-quinolone antibacterial agents. Eur J Clin Microbiol. 1984 Aug;3(4):347–350. [PubMed]
  • Stevens PJ. Bactericidal effect against Escherichia coli of nalidixic acid and four structurally related compounds. J Antimicrob Chemother. 1980 Jul;6(4):535–542. [PubMed]
  • Tenney JH, Maack RW, Chippendale GR. Rapid selection of organisms with increasing resistance on subinhibitory concentrations of norfloxacin in agar. Antimicrob Agents Chemother. 1983 Jan;23(1):188–189. [PMC free article] [PubMed]
  • Thabaut A, Durosoir JL. Activité antibactérienne comparée in vitro de la péfloxacine (1589 RB), de l'acide nalidixique, de l'acide pipémidique et de la fluméquine. Pathol Biol (Paris) 1982 Jun;30(6):394–397. [PubMed]
  • Thibault M, Koumaré B, Soussy CJ, Duval J. Relations structure-activité dans le groupe des quinolones: étude de l'activité antibactérienne de deux nouveaux composés. Ann Microbiol (Paris) 1981 May-Jun;132(3):267–281. [PubMed]
  • Traub WH. Intraphagocytic bactericidal activity of bacterial DNA gyrase inhibitors against Serratia marcescens. Chemotherapy. 1984;30(6):379–386. [PubMed]
  • Traub WH. Incomplete cross-resistance of nalidixic and pipemidic acid-resistant variants of Serratia marcescens against ciprofloxacin, enoxacin, and norfloxacin. Chemotherapy. 1985;31(1):34–39. [PubMed]
  • Traub WH, Spohr M. In vitro antibiotic susceptibility of Legionellaceae: search for alternative antimicrobial drugs. Chemotherapy. 1984;30(3):182–187. [PubMed]
  • Tsukamura M. In vitro antimycobacterial activity of a new antibacterial substance DL-8280--differentiation between some species of mycobacteria and related organisms by the DL-8280 susceptibility test. Microbiol Immunol. 1983;27(12):1129–1132. [PubMed]
  • Van Caekenberghe DL, Pattyn SR. In vitro activity of ciprofloxacin compared with those of other new fluorinated piperazinyl-substituted quinoline derivatives. Antimicrob Agents Chemother. 1984 Apr;25(4):518–521. [PMC free article] [PubMed]
  • Wentland MP, Bailey DM, Cornett JB, Dobson RA, Powles RG, Wagner RB. Novel amino-substituted 3-quinolinecarboxylic acid antibacterial agents: synthesis and structure-activity relationships. J Med Chem. 1984 Sep;27(9):1103–1108. [PubMed]
  • Winshell EB, Rosenkranz HS. Nalidixic Acid and the Metabolism of Escherichia coli. J Bacteriol. 1970 Dec;104(3):1168–1175. [PMC free article] [PubMed]
  • Wise R, Andrews JM, Danks G. In-vitro activity of enoxacin (CL-919), a new quinoline derivative, compared with that of other antimicrobial agents. J Antimicrob Chemother. 1984 Mar;13(3):237–244. [PubMed]
  • Wise R, Andrews JM, Edwards LJ. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother. 1983 Apr;23(4):559–564. [PMC free article] [PubMed]
  • Yamagishi J, Furutani Y, Inoue S, Ohue T, Nakamura S, Shimizu M. New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity. J Bacteriol. 1981 Nov;148(2):450–458. [PMC free article] [PubMed]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)