Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1997 July; 179(14): 4530–4537.
PMCID: PMC179288

Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene.


Pseudomonas putida GJ31 is able to simultaneously grow on toluene and chlorobenzene. When cultures of this strain were inhibited with 3-fluorocatechol while growing on toluene or chlorobenzene, 3-methylcatechol or 3-chlorocatechol, respectively, accumulated in the medium. To establish the catabolic routes for these catechols, activities of enzymes of the (modified) ortho- and meta-cleavage pathways were measured in crude extracts of cells of P. putida GJ31 grown on various aromatic substrates, including chlorobenzene. The enzymes of the modified ortho-cleavage pathway were never present, while the enzymes of the meta-cleavage pathway were detected in all cultures. This indicated that chloroaromatics and methylaromatics are both converted via the meta-cleavage pathway. Meta cleavage of 3-chlorocatechol usually leads to the formation of a reactive acylchloride, which inactivates the catechol 2,3-dioxygenase and blocks further degradation of catechols. However, partially purified catechol 2,3-dioxygenase of P. putida GJ31 converted 3-chlorocatechol to 2-hydroxy-cis,cis-muconic acid. Apparently, P. putida GJ31 has a meta-cleavage enzyme which is resistant to inactivation by the acylchloride, providing this strain with the exceptional ability to degrade both toluene and chlorobenzene via the meta-cleavage pathway.

Full Text

The Full Text of this article is available as a PDF (196K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arensdorf JJ, Focht DD. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl Environ Microbiol. 1994 Aug;60(8):2884–2889. [PMC free article] [PubMed]
  • Assinder SJ, Williams PA. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol. 1990;31:1–69. [PubMed]
  • Bartels I, Knackmuss HJ, Reineke W. Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols. Appl Environ Microbiol. 1984 Mar;47(3):500–505. [PMC free article] [PubMed]
  • de Bont JA, Vorage MJ, Hartmans S, van den Tweel WJ. Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol. 1986 Oct;52(4):677–680. [PMC free article] [PubMed]
  • Dorn E, Hellwig M, Reineke W, Knackmuss HJ. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol. 1974;99(1):61–70. [PubMed]
  • Dorn E, Knackmuss HJ. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. [PubMed]
  • Evans WC, Smith BS, Moss P, Fernley HN. Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J. 1971 May;122(4):509–517. [PubMed]
  • Haigler BE, Nishino SF, Spain JC. Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol. 1988 Feb;54(2):294–301. [PMC free article] [PubMed]
  • Haigler BE, Pettigrew CA, Spain JC. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol. 1992 Jul;58(7):2237–2244. [PMC free article] [PubMed]
  • Hartmann J, Reineke W, Knackmuss HJ. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol. 1979 Mar;37(3):421–428. [PMC free article] [PubMed]
  • Higson FK, Focht DD. Utilization of 3-chloro-2-methylbenzoic acid by Pseudomonas cepacia MB2 through the meta fission pathway. Appl Environ Microbiol. 1992 Aug;58(8):2501–2504. [PMC free article] [PubMed]
  • Hollender J, Dott W, Hopp J. Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5. Appl Environ Microbiol. 1994 Jul;60(7):2330–2338. [PMC free article] [PubMed]
  • Janke D, Fritsche W. Dechlorierung von 4-Chlorphenol nach extradioler Ringspaltung durch Pseudomonas putida. Z Allg Mikrobiol. 1979;19(2):139–141. [PubMed]
  • Kaschabek SR, Reineke W. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol. 1992;158(6):412–417. [PubMed]
  • Kersten PJ, Chapman PJ, Dagley S. Enzymatic release of halogens or methanol from some substituted protocatechuic acids. J Bacteriol. 1985 May;162(2):693–697. [PMC free article] [PubMed]
  • Klecka GM, Gibson DT. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol. 1981 May;41(5):1159–1165. [PMC free article] [PubMed]
  • McCullar MV, Brenner V, Adams RH, Focht DD. Construction of a Novel Polychlorinated Biphenyl-Degrading Bacterium: Utilization of 3,4'-Dichlorobiphenyl by Pseudomonas acidovorans M3GY. Appl Environ Microbiol. 1994 Oct;60(10):3833–3839. [PMC free article] [PubMed]
  • Nakazawa T, Yokota T. Benzoate metabolism in Pseudomonas putida(arvilla) mt-2: demonstration of two benzoate pathways. J Bacteriol. 1973 Jul;115(1):262–267. [PMC free article] [PubMed]
  • Pettigrew CA, Haigler BE, Spain JC. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl Environ Microbiol. 1991 Jan;57(1):157–162. [PMC free article] [PubMed]
  • Reineke W, Knackmuss HJ. Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol. 1984 Feb;47(2):395–402. [PMC free article] [PubMed]
  • Rojo F, Pieper DH, Engesser KH, Knackmuss HJ, Timmis KN. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science. 1987 Dec 4;238(4832):1395–1398. [PubMed]
  • Sala-Trepat JM, Murray K, Williams PA. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Eur J Biochem. 1972 Jul 24;28(3):347–356. [PubMed]
  • Sander P, Wittich RM, Fortnagel P, Wilkes H, Francke W. Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by pseudomonas strains. Appl Environ Microbiol. 1991 May;57(5):1430–1440. [PMC free article] [PubMed]
  • Schlömann M. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation. 1994 Dec;5(3-4):301–321. [PubMed]
  • Schraa G, Boone ML, Jetten MS, van Neerven AR, Colberg PJ, Zehnder AJ. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol. 1986 Dec;52(6):1374–1381. [PMC free article] [PubMed]
  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ. Critical Reactions in Fluorobenzoic Acid Degradation by Pseudomonas sp. B13. Appl Environ Microbiol. 1980 Jan;39(1):58–67. [PMC free article] [PubMed]
  • Spain JC, Nishino SF. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol. 1987 May;53(5):1010–1019. [PMC free article] [PubMed]
  • Spiess E, Sommer C, Görisch H. Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl Environ Microbiol. 1995 Nov;61(11):3884–3888. [PMC free article] [PubMed]
  • van der Meer JR, van Neerven AR, de Vries EJ, de Vos WM, Zehnder AJ. Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol. 1991 Jan;173(1):6–15. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)