Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1997 April; 179(8): 2587–2594.
PMCID: PMC179008

Specificity of tRNA-mRNA interactions in Bacillus subtilis tyrS antitermination.


The Bacillus subtilis tyrS gene, encoding tyrosyl-tRNA synthetase, is a member of the T-box family of genes, which are regulated by control of readthrough of a leader region transcriptional terminator. Readthrough is induced by interaction of the cognate uncharged tRNA with the leader; the system responds to decreased tRNA charging, caused by amino acid limitation or insufficient levels of the aminoacyl-tRNA synthetase. Recognition of the cognate tRNA is mediated by pairing of the anticodon of the tRNA with the specifier sequence of the leader, a codon specifying the appropriate amino acid; a second interaction between the acceptor end of the tRNA and an antiterminator structure is also important. Certain switches of the specifier sequence to a new codon result in a switch in the specificity of the amino acid response, while other switches do not. These effects may reflect additional sequence or structural requirements for the mRNA-tRNA interaction. This study includes investigation of the effects of a large number of specifier sequence switches in tyrS and analysis of structural differences between tRNA(Tyr) and tRNA species which interact inefficiently with the tyrS leader to promote antitermination.

Full Text

The Full Text of this article is available as a PDF (258K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anagnostopoulos C, Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. [PMC free article] [PubMed]
  • Garrity DB, Zahler SA. The Bacillus subtilis ochre suppressor sup-3 is located in an operon of seven tRNA genes. J Bacteriol. 1993 Oct;175(20):6512–6517. [PMC free article] [PubMed]
  • Garrity DB, Zahler SA. Mutations in the gene for a tRNA that functions as a regulator of a transcriptional attenuator in Bacillus subtilis. Genetics. 1994 Jul;137(3):627–636. [PubMed]
  • Grandoni JA, Fulmer SB, Brizzio V, Zahler SA, Calvo JM. Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine. J Bacteriol. 1993 Dec;175(23):7581–7593. [PMC free article] [PubMed]
  • Green CJ, Vold BS. Sequence analysis of a cluster of twenty-one tRNA genes in Bacillus subtilis. Nucleic Acids Res. 1983 Aug 25;11(16):5763–5774. [PMC free article] [PubMed]
  • Green CJ, Vold BS. A cluster of nine tRNA genes between ribosomal gene operons in Bacillus subtilis. J Bacteriol. 1992 May;174(10):3147–3151. [PMC free article] [PubMed]
  • Grundy FJ, Henkin TM. The rpsD gene, encoding ribosomal protein S4, is autogenously regulated in Bacillus subtilis. J Bacteriol. 1991 Aug;173(15):4595–4602. [PMC free article] [PubMed]
  • Grundy FJ, Henkin TM. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell. 1993 Aug 13;74(3):475–482. [PubMed]
  • Grundy FJ, Henkin TM. Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria. J Mol Biol. 1994 Jan 14;235(2):798–804. [PubMed]
  • Grundy FJ, Rollins SM, Henkin TM. Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base. J Bacteriol. 1994 Aug;176(15):4518–4526. [PMC free article] [PubMed]
  • Grundy FJ, Waters DA, Allen SH, Henkin TM. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol. 1993 Nov;175(22):7348–7355. [PMC free article] [PubMed]
  • Hasegawa T, Miyano M, Himeno H, Sano Y, Kimura K, Shimizu M. Identity determinants of E. coli threonine tRNA. Biochem Biophys Res Commun. 1992 Apr 15;184(1):478–484. [PubMed]
  • Henkin TM. tRNA-directed transcription antitermination. Mol Microbiol. 1994 Aug;13(3):381–387. [PubMed]
  • Henkin TM, Chambliss GH. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4. Mol Gen Genet. 1984;193(2):364–369. [PubMed]
  • Henkin TM, Glass BL, Grundy FJ. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol. 1992 Feb;174(4):1299–1306. [PMC free article] [PubMed]
  • Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. [PubMed]
  • Ladner JE, Jack A, Robertus JD, Brown RS, Rhodes D, Clark BF, Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. [PubMed]
  • Marta PT, Ladner RD, Grandoni JA. A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon. J Bacteriol. 1996 Apr;178(7):2150–2153. [PMC free article] [PubMed]
  • Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. [PubMed]
  • Nakano MM, Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J Bacteriol. 1989 Oct;171(10):5347–5353. [PMC free article] [PubMed]
  • Ogasawara N, Moriya S, Yoshikawa H. Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res. 1983 Sep 24;11(18):6301–6318. [PMC free article] [PubMed]
  • Perret V, Garcia A, Grosjean H, Ebel JP, Florentz C, Giegé R. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature. 1990 Apr 19;344(6268):787–789. [PubMed]
  • Putzer H, Gendron N, Grunberg-Manago M. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J. 1992 Aug;11(8):3117–3127. [PubMed]
  • Putzer H, Laalami S, Brakhage AA, Condon C, Grunberg-Manago M. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: induction, repression and growth-rate regulation. Mol Microbiol. 1995 May;16(4):709–718. [PubMed]
  • Steinmetz M, Richter R. Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene. 1994 May 3;142(1):79–83. [PubMed]
  • Stragier P, Bonamy C, Karmazyn-Campelli C. Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell. 1988 Mar 11;52(5):697–704. [PubMed]
  • Wawrousek EF, Hansen JN. Structure and organization of a cluster of sic tRNA genes in the space between tandem ribosomal RNA gene sets in Bacillus subtilis. J Biol Chem. 1983 Jan 10;258(1):291–298. [PubMed]
  • Wawrousek EF, Narasimhan N, Hansen JN. Two large clusters with thirty-seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis. Sequence and organization of trrnD and trrnE gene clusters. J Biol Chem. 1984 Mar 25;259(6):3694–3702. [PubMed]
  • Zuber P, Losick R. Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J Bacteriol. 1987 May;169(5):2223–2230. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)