PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1997 April; 179(7): 2194–2201.
PMCID: PMC178955

Cloning and characterization of an Mn-containing superoxide dismutase (SodA) of Bordetella pertussis.

Abstract

The Fur titration assay (FURTA) recently developed by I. Stojiljkovic and coworkers (J. Mol. Biol. 236:531-545, 1994) was applied to clone iron-regulated genes of Bordetella pertussis. After sequence analysis, one of the clones obtained by this selection procedure was shown to contain an open reading frame with significant sequence similarities to Mn-containing superoxide dismutases (SodA). The open reading frame was preceded by a Fur consensus binding site, which according to primer extension analysis overlaps the -10 region of the sodA promoter. Southern blot analysis also revealed the presence of sodA homologous sequences in Bordetella bronchiseptica. On the transcriptional level, sodA expression is strictly iron regulated in both organisms and also in the heterologous host Escherichia coli harboring a plasmid with the sodA gene. Accordingly, SodA-mediated superoxide dismutase activity in Bordetella lysates was detected only after cultivation of the bacteria in iron-restricted media. A B. bronchiseptica fur mutant constitutively expressed SodA, thereby confirming the functional similarity of the iron regulatory systems in the two genera. Apart from iron regulation, sodA expression was affected by changes in DNA topology induced by coumermycin A but not by the global virulence regulatory Bvg system. B. pertussis and B. bronchiseptica sodA deletion mutants did not show significant changes in their growth properties. In contrast, mutation of the previously described Fe-containing SodB enzyme resulted in clones strongly impaired in viability. No direct involvement of SodA in bacterial virulence could be revealed because deletion of the sodA gene affected survival of Bordetella species neither in cultured macrophages nor in a mouse respiratory infection model.

Full Text

The Full Text of this article is available as a PDF (638K).

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)