PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1997 January; 179(1): 235–242.
PMCID: PMC178684

Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d1 biosynthesis.

Abstract

The primary structure of an nir gene cluster necessary for production of active dissimilatory nitrite reductase was determined from Pseudomonas aeruginosa. Seven open reading frames, designated nirDLGHJEN, were identified downstream of the previously reported nirSMCF genes. From nirS through nirN, the stop codon of one gene and the start codon of the next gene were closely linked, suggesting that nirSMCFDLGHJEN are expressed from a promoter which regulates the transcription of nirSM. The amino acid sequences deduced from the nirDLGH genes were homologous to each other. A gene, designated nirJ, which encodes a protein of 387 amino acids, showed partial identity with each of the nirDLGH genes. The nirE gene encodes a protein of 279 amino acids homologous to S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase from other bacterial strains. In addition, NirE shows 21.0% identity with NirF in the N-terminal 100-amino-acid residues. A gene, designated nirN, encodes a protein of 493 amino acids with a conserved binding motif for heme c (CXXCH) and a typical N-terminal signal sequence for membrane translocation. The derived NirN protein shows 23.9% identity with nitrite reductase (NirS). Insertional mutation and complementation analyses showed that all of the nirFDLGHJE genes were necessary for the biosynthesis of heme d1.

Full Text

The Full Text of this article is available as a PDF (270K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arai H, Sanbongi Y, Igarashi Y, Kodama T. Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa. FEBS Lett. 1990 Feb 12;261(1):196–198. [PubMed]
  • Arai H, Igarashi Y, Kodama T. Anaerobically induced expression of the nitrite reductase cytochrome c-551 operon from Pseudomonas aeruginosa. FEBS Lett. 1991 Mar 25;280(2):351–353. [PubMed]
  • Arai H, Igarashi Y, Kodama T. Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci Biotechnol Biochem. 1994 Jul;58(7):1286–1291. [PubMed]
  • Arai H, Igarashi Y, Kodama T. The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. Biochim Biophys Acta. 1995 Apr 4;1261(2):279–284. [PubMed]
  • Blanche F, Debussche L, Thibaut D, Crouzet J, Cameron B. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J Bacteriol. 1989 Aug;171(8):4222–4231. [PMC free article] [PubMed]
  • Chang CK, Wu W. The porphinedione structure of heme d1. Synthesis and spectral properties of model compounds of the prosthetic group of dissimilatory nitrite reductase. J Biol Chem. 1986 Jul 5;261(19):8593–8596. [PubMed]
  • DAVIS BJ. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. [PubMed]
  • de Boer AP, Reijnders WN, Kuenen JG, Stouthamer AH, van Spanning RJ. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Van Leeuwenhoek. 1994;66(1-3):111–127. [PubMed]
  • d'Aubenton Carafa Y, Brody E, Thermes C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol. 1990 Dec 20;216(4):835–858. [PubMed]
  • De Mot R, Schoofs G, Nagy I, Vanderleyden J. Sequence of the cobA gene encoding S-adenosyl-L-methionine: uroporhyrinogen III methyltransferase of Pseudomonas fluorescens. Gene. 1994 Dec 2;150(1):199–200. [PubMed]
  • Dunn NW, Holloway BW. Pleiotrophy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. Genet Res. 1971 Oct;18(2):185–197. [PubMed]
  • Fülöp V, Moir JW, Ferguson SJ, Hajdu J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell. 1995 May 5;81(3):369–377. [PubMed]
  • Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. [PubMed]
  • Galimand M, Gamper M, Zimmermann A, Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol. 1991 Mar;173(5):1598–1606. [PMC free article] [PubMed]
  • Glockner AB, Jüngst A, Zumft WG. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch Microbiol. 1993;160(1):18–26. [PubMed]
  • Goosen N, Horsman HP, Huinen RG, van de Putte P. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol. 1989 Jan;171(1):447–455. [PMC free article] [PubMed]
  • Gribskov M, Devereux J, Burgess RR. The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):539–549. [PMC free article] [PubMed]
  • Gudat JC, Singh J, Wharton DC. Cytochrome oxidase from Pseudomonas aeruginosa. I. Purification and some properties. Biochim Biophys Acta. 1973 Feb 22;292(2):376–390. [PubMed]
  • Hansson M, Hederstedt L. Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J Bacteriol. 1994 Oct;176(19):5962–5970. [PMC free article] [PubMed]
  • Haydock SF, Dowson JA, Dhillon N, Roberts GA, Cortes J, Leadlay PF. Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol Gen Genet. 1991 Nov;230(1-2):120–128. [PubMed]
  • Kawasaki S, Arai H, Igarashi Y, Kodama T. Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1. Gene. 1995 Dec 29;167(1-2):87–91. [PubMed]
  • Kuronen T, Ellfolk N. A new purification procedure and molecular properties of Pseudomonas cytochrome oxidase. Biochim Biophys Acta. 1972 Sep 20;275(3):308–318. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lam Y, Nicholas DJ. A nitrite reductase with cytochrome oxidase activity from Micrococcus denitrificans. Biochim Biophys Acta. 1969 Aug 5;180(3):459–472. [PubMed]
  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol. 1992 Sep;174(18):5814–5819. [PMC free article] [PubMed]
  • Meulenberg JJ, Sellink E, Riegman NH, Postma PW. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet. 1992 Mar;232(2):284–294. [PubMed]
  • Page MD, Ferguson SJ. A bacterial c-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochrome cd1 (nitrite reductase) from Paracoccus denitrificans. Mol Microbiol. 1989 May;3(5):653–661. [PubMed]
  • Palmedo G, Seither P, Körner H, Matthews JC, Burkhalter RS, Timkovich R, Zumft WG. Resolution of the nirD locus for heme d1 synthesis of cytochrome cd1 (respiratory nitrite reductase) from Pseudomonas stutzeri. Eur J Biochem. 1995 Sep 15;232(3):737–746. [PubMed]
  • Parr SR, Barber D, Greenwood C. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa. Biochem J. 1976 Aug 1;157(2):423–430. [PubMed]
  • Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R, Cole J. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem. 1990 Jul 31;191(2):315–323. [PubMed]
  • Saito I, Stark GR. Charomids: cosmid vectors for efficient cloning and mapping of large or small restriction fragments. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8664–8668. [PubMed]
  • Silvestrini MC, Galeotti CL, Gervais M, Schininà E, Barra D, Bossa F, Brunori M. Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 1989 Aug 28;254(1-2):33–38. [PubMed]
  • Silvestrini MC, Tordi MG, Musci G, Brunori M. The reaction of Pseudomonas nitrite reductase and nitrite. A stopped-flow and EPR study. J Biol Chem. 1990 Jul 15;265(20):11783–11787. [PubMed]
  • Silvestrini MC, Cutruzzolà F, D'Alessandro R, Brunori M, Fochesato N, Zennaro E. Expression of Pseudomonas aeruginosa nitrite reductase in Pseudomonas putida and characterization of the recombinant protein. Biochem J. 1992 Jul 15;285(Pt 2):661–666. [PubMed]
  • Spencer JB, Stolowich NJ, Roessner CA, Scott AI. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 1993 Nov 29;335(1):57–60. [PubMed]
  • Spiro S, Guest JR. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):399–428. [PubMed]
  • Tinoco I, Jr, Borer PN, Dengler B, Levin MD, Uhlenbeck OC, Crothers DM, Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. [PubMed]
  • Thomas PE, Ryan D, Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PubMed]
  • Van Hartingsveldt J, Marinus MG, Stouthamer AH. Mutants of Pseudomonas aeruginosa bblocked in nitrate or nitrite dissimilation. Genetics. 1971 Apr;67(4):469–482. [PubMed]
  • van Hartingsveldt J, Stouthamer AH. Mapping and characerization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J Gen Microbiol. 1973 Jan;74(1):97–106. [PubMed]
  • Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I, Postma PW. Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol. 1995 Sep;177(17):5088–5098. [PMC free article] [PubMed]
  • Walsh TA, Johnson MK, Barber D, Thomson AJ, Greenwood C. Studies on heme d1 extracted from Pseudomonas aeruginosa nitrite reductase. J Inorg Biochem. 1981 Feb;14(1):15–31. [PubMed]
  • Warren MJ, Bolt EL, Roessner CA, Scott AI, Spencer JB, Woodcock SC. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J. 1994 Sep 15;302(Pt 3):837–844. [PubMed]
  • West SE, Iglewski BH. Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res. 1988 Oct 11;16(19):9323–9335. [PMC free article] [PubMed]
  • Wu JY, Siegel LM, Kredich NM. High-level expression of Escherichia coli NADPH-sulfite reductase: requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J Bacteriol. 1991 Jan;173(1):325–333. [PMC free article] [PubMed]
  • Zannoni D. The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta. 1989 Aug 3;975(3):299–316. [PubMed]
  • Zennaro E, Ciabatti I, Cutruzzola F, D'Alessandro R, Silvestrini MC. The nitrite reductase gene of Pseudomonas aeruginosa: effect of growth conditions on the expression and construction of a mutant by gene disruption. FEMS Microbiol Lett. 1993 May 15;109(2-3):243–250. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)