PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. Nov 1996; 178(21): 6123–6132.
PMCID: PMC178480
Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600.
H R Knobel, T Egli, and J R van der Meer
Swiss Federal Institute for Environmental Science and Technology, Dübendorf.
Abstract
A 6.2-kb DNA fragment containing the genes for the nitrilotriacetate (NTA) monooxygenase of Chelatobacter heintzii ATCC 29600 was cloned and characterized by DNA sequencing and expression studies. The nucleotide sequence contained three major open reading frames (ORFs). Two of the ORFs, which were oriented divergently with an intergenic region of 307 bp, could be assigned to the NTA monooxygenase components A and B. The predicted N-terminal amino acid sequences of these ORFs were identical with those determined for the purified components. We therefore named these genes ntaA (for component A of NTA monooxygenase) and ntaB (for component B). The ntaA and ntaB genes could be expressed in Escherichia coli DH5alpha, and the gene products were visualized after Western blotting (immunoblotting) and incubation with polyclonal antibodies against component A or B. By mixing overproduced NtaB from E. coli and purified component A from C. heintzii ATCC 29600, reconstitution of a functional NTA monooxygenase complex was possible. The deduced gene product of ntaA showed only significant homology to SoxA (involved in dibenzothiophene degradation) and to SnaA (involved in pristamycin synthesis); that of ntaB shared weak homologies in one domain with other NADH:flavine mononucleotide oxidoreductases. These homologies provide no conclusive answer as to the possible evolutionary origin of the NTA monooxygenase. The deduced gene product of the third ORF (ORF1) had homology in the N-terminal region with the GntR class of bacterial regulator proteins and therefore may encode a regulator protein, possibly involved in regulation of ntaA and ntaB expression.
Full Text
The Full Text of this article is available as a PDF (813K).
Articles from Journal of Bacteriology are provided here courtesy of
American Society for Microbiology (ASM)