Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1996 September; 178(18): 5456–5463.
PMCID: PMC178367

Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities.


sigma B is a secondary sigma factor that controls the general stress regulon in Bacillus subtilis. The regulon is activated when sigma B is released from a complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate mechanisms cause sigma B release: an ATP-responsive mechanism that correlates with nutritional stress and an ATP-independent mechanism that responds to environmental insult (e.g., heat shock and ethanol treatment). ATP levels are thought to directly affect RsbW's binding preference. Low levels of ATP cause RsbW to release sigma B and bind to an alternative protein (RsbV), while high levels of ATP favor RsbW-sigma B complex formation and inactivation of RsbV by an RsbW-dependent phosphorylation. During growth, most of the RsbV is phosphorylated (RsbV-P) and inactive. Environmental stress induces the release of sigma B and the formation of the RsbW-RsbV complex, regardless of ATP levels. This pathway requires the products of additional genes encoded within the eight-gene operon (sigB) that includes the genes for sigma B, RsbW, and RsbV. By using isoelectric focusing techniques to distinguish RsbV from RsbV-P and chloramphenicol treatment or pulse-chase labeling to identify preexisting RsbV-P, we have now determined that stress induces the dephosphorylation of RsbV-P to reactivate RsbV. RsbV-P was also found to be dephosphorylated upon a drop in intracellular ATP levels. The stress-dependent and ATP-responsive dephosphorylations of RsbV-P differed in their requirements for the products of the first four genes (rsbR, -S, -T, and -U) of the sigB operon. Both dephosphorylation reactions required at least one of the genes included in a deletion that removed rsbR, -S, and -T; however, only an environmental insult required RsbU to reactivate RsbV.

Full Text

The Full Text of this article is available as a PDF (964K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alper S, Duncan L, Losick R. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell. 1994 Apr 22;77(2):195–205. [PubMed]
  • Arigoni F, Duncan L, Alper S, Losick R, Stragier P. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3238–3242. [PubMed]
  • Benson AK, Haldenwang WG. Characterization of a regulatory network that controls sigma B expression in Bacillus subtilis. J Bacteriol. 1992 Feb;174(3):749–757. [PMC free article] [PubMed]
  • Benson AK, Haldenwang WG. Regulation of sigma B levels and activity in Bacillus subtilis. J Bacteriol. 1993 Apr;175(8):2347–2356. [PMC free article] [PubMed]
  • Benson AK, Haldenwang WG. The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol. 1993 Apr;175(7):1929–1935. [PMC free article] [PubMed]
  • Benson AK, Haldenwang WG. Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2330–2334. [PubMed]
  • Binnie C, Lampe M, Losick R. Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5943–5947. [PubMed]
  • Boylan SA, Redfield AR, Brody MS, Price CW. Stress-induced activation of the sigma B transcription factor of Bacillus subtilis. J Bacteriol. 1993 Dec;175(24):7931–7937. [PMC free article] [PubMed]
  • Boylan SA, Redfield AR, Price CW. Transcription factor sigma B of Bacillus subtilis controls a large stationary-phase regulon. J Bacteriol. 1993 Jul;175(13):3957–3963. [PMC free article] [PubMed]
  • Boylan SA, Rutherford A, Thomas SM, Price CW. Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals. J Bacteriol. 1992 Jun;174(11):3695–3706. [PMC free article] [PubMed]
  • Diederich B, Wilkinson JF, Magnin T, Najafi M, Erringston J, Yudkin MD. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor sigma F of Bacillus subtilis. Genes Dev. 1994 Nov 1;8(21):2653–2663. [PubMed]
  • Dufour A, Haldenwang WG. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol. 1994 Apr;176(7):1813–1820. [PMC free article] [PubMed]
  • Dufour A, Voelker U, Voelker A, Haldenwang WG. Relative levels and fractionation properties of Bacillus subtilis sigma(B) and its regulators during balanced growth and stress. J Bacteriol. 1996 Jul;178(13):3701–sigma. [PMC free article] [PubMed]
  • Duncan L, Alper S, Arigoni F, Losick R, Stragier P. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science. 1995 Oct 27;270(5236):641–644. [PubMed]
  • Duncan L, Losick R. SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2325–2329. [PubMed]
  • Duncan ML, Kalman SS, Thomas SM, Price CW. Gene encoding the 37,000-dalton minor sigma factor of Bacillus subtilis RNA polymerase: isolation, nucleotide sequence, chromosomal locus, and cryptic function. J Bacteriol. 1987 Feb;169(2):771–778. [PMC free article] [PubMed]
  • Feucht A, Magnin T, Yudkin MD, Errington J. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 1996 Apr 1;10(7):794–803. [PubMed]
  • Haldenwang WG, Losick R. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7000–7004. [PubMed]
  • Hecker M, Heim C, Völker U, Wölfel L. Induction of stress proteins by sodium chloride treatment in Bacillus subtilis. Arch Microbiol. 1988;150(6):564–566. [PubMed]
  • Igo M, Lampe M, Ray C, Schafer W, Moran CP, Jr, Losick R. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol. 1987 Aug;169(8):3464–3469. [PMC free article] [PubMed]
  • Igo MM, Losick R. Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J Mol Biol. 1986 Oct 20;191(4):615–624. [PubMed]
  • Kalman S, Duncan ML, Thomas SM, Price CW. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol. 1990 Oct;172(10):5575–5585. [PMC free article] [PubMed]
  • Kang CM, Brody MS, Akbar S, Yang X, Price CW. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress. J Bacteriol. 1996 Jul;178(13):3846–3853. [PMC free article] [PubMed]
  • Kenney TJ, Moran CP., Jr Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):3329–3339. [PMC free article] [PubMed]
  • Kirchman PA, DeGrazia H, Kellner EM, Moran CP., Jr Forespore-specific disappearance of the sigma-factor antagonist spoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol Microbiol. 1993 May;8(4):663–671. [PubMed]
  • Magnin T, Lord M, Errington J, Yudkin MD. Establishing differential gene expression in sporulating Bacillus subtilis: phosphorylation of SpoIIAA (anti-anti-sigmaF) alters its conformation and prevents formation of a SpoIIAA/SpoIIAB/ADP complex. Mol Microbiol. 1996 Feb;19(4):901–907. [PubMed]
  • Maul B, Völker U, Riethdorf S, Engelmann S, Hecker M. sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet. 1995 Jul 22;248(1):114–120. [PubMed]
  • Min KT, Hilditch CM, Diederich B, Errington J, Yudkin MD. Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase. Cell. 1993 Aug 27;74(4):735–742. [PubMed]
  • Rather PN, Coppolecchia R, DeGrazia H, Moran CP., Jr Negative regulator of sigma G-controlled gene expression in stationary-phase Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):709–715. [PMC free article] [PubMed]
  • Schmidt R, Margolis P, Duncan L, Coppolecchia R, Moran CP, Jr, Losick R. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9221–9225. [PubMed]
  • Stülke J, Hanschke R, Hecker M. Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol. 1993 Sep;139(9):2041–2045. [PubMed]
  • Voelker U, Dufour A, Haldenwang WG. The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of sigma B. J Bacteriol. 1995 Jan;177(1):114–122. [PMC free article] [PubMed]
  • Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. [PubMed]
  • Voelker U, Voelker A, Maul B, Hecker M, Dufour A, Haldenwang WG. Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol. 1995 Jul;177(13):3771–3780. [PMC free article] [PubMed]
  • Wise AA, Price CW. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. J Bacteriol. 1995 Jan;177(1):123–133. [PMC free article] [PubMed]
  • Yasbin RE, Wilson GA, Young FE. Transformation and transfection in lysogenic strains of Bacillus subtilis 168. J Bacteriol. 1973 Feb;113(2):540–548. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)