Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1996 August; 178(15): 4445–4452.
PMCID: PMC178210

A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins.


Recently, a novel type of regulatory mutation causing differential effects on the expression of virulence genes due to a slight overexpression of the RNA polymerase alpha subunit (RpoA) was found in Bordetella pertussis (N. H. Carbonetti, T. M. Fuchs, A. A. Patamawenu, T. J. Irish, H. Deppisch, and R. Gross, J. Bacteriol. 176:7267-7273, 1994). To gather information on the molecular events behind this phenomenon, we isolated suppressor mutants of the RpoA-overexpressing strains after random mutagenesis. Genetic characterization of these suppressor strains revealed the existence of at least three distinct groups of dominant alleles. Mutations occurred either in the rpoA locus itself, in the bvg locus, or in unknown gene loci. One mutant of the latter group was further characterized. By the introduction of a cosmid library containing genomic B. pertussis DNA into this suppressor strain, we isolated a cosmid which suppressed the phenotype of the suppressor strain, thus restoring the negative effect on transcription of the ptx and cya toxin genes. Mutagenesis of the cosmid with Tn5 led to the identification of the gene locus responsible for this phenomenon. Its DNA sequence revealed the presence of an open reading frame (ORF) consisting of 2,373 bp coding for a hypothetical 86-kDa protein with extensive sequence similarities to ORFs with not yet identified functions of Escherichia coli, Haemophilus influenzae, and Neisseria meningitidis. The new gene, termed tex, for toxin expression, seems to be an essential factor for B. pertussis, as it cannot be deleted from the bacterial chromosome. All members of this new protein family show significant sequence similarities with the mannitol repressor protein MtlR and with the presumptive RNA-binding domains of the Pnp and ribosomal S1 proteins of E. coli in their N- and C-terminal parts, respectively. These sequence similarities and the fact that the tex gene was isolated by virtue of its effects on gene expression in B. pertussis indicate that the members of this new protein family may play an important role in the transcription machinery of prokaryotic organisms.

Full Text

The Full Text of this article is available as a PDF (388K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aricó B, Miller JF, Roy C, Stibitz S, Monack D, Falkow S, Gross R, Rappuoli R. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6671–6675. [PubMed]
  • Beier D, Schwarz B, Fuchs TM, Gross R. In vivo characterization of the unorthodox BvgS two-component sensor protein of Bordetella pertussis. J Mol Biol. 1995 May 5;248(3):596–610. [PubMed]
  • Boucher PE, Stibitz S. Synergistic binding of RNA polymerase and BvgA phosphate to the pertussis toxin promoter of Bordetella pertussis. J Bacteriol. 1995 Nov;177(22):6486–6491. [PMC free article] [PubMed]
  • Carbonetti NH, Fuchs TM, Patamawenu AA, Irish TJ, Deppisch H, Gross R. Effect of mutations causing overexpression of RNA polymerase alpha subunit on regulation of virulence factors in Bordetella pertussis. J Bacteriol. 1994 Dec;176(23):7267–7273. [PMC free article] [PubMed]
  • Carbonetti NH, Khelef N, Guiso N, Gross R. A phase variant of Bordetella pertussis with a mutation in a new locus involved in the regulation of pertussis toxin and adenylate cyclase toxin expression. J Bacteriol. 1993 Oct;175(20):6679–6688. [PMC free article] [PubMed]
  • Cookson BT, Berg DE, Goldman WE. Mutagenesis of Bordetella pertussis with transposon Tn5tac1: conditional expression of virulence-associated genes. J Bacteriol. 1990 Apr;172(4):1681–1687. [PMC free article] [PubMed]
  • DeShazer D, Wood GE, Friedman RL. Identification of a Bordetella pertussis regulatory factor required for transcription of the pertussis toxin operon in Escherichia coli. J Bacteriol. 1995 Jul;177(13):3801–3807. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Figge RM, Ramseier TM, Saier MH., Jr The mannitol repressor (MtlR) of Escherichia coli. J Bacteriol. 1994 Feb;176(3):840–847. [PMC free article] [PubMed]
  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. [PubMed]
  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. [PubMed]
  • Frosch M, Edwards U, Bousset K, Krausse B, Weisgerber C. Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides. Mol Microbiol. 1991 May;5(5):1251–1263. [PubMed]
  • Goyard S, Ullmann A. Functional analysis of the cya promoter of Bordetella pertussis. Mol Microbiol. 1993 Mar;7(5):693–704. [PubMed]
  • Graeff-Wohlleben H, Deppisch H, Gross R. Global regulatory mechanisms affect virulence gene expression in Bordetella pertussis. Mol Gen Genet. 1995 Apr 10;247(1):86–94. [PubMed]
  • Gross R, Rappuoli R. Positive regulation of pertussis toxin expression. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3913–3917. [PubMed]
  • Gross R, Rappuoli R. Pertussis toxin promoter sequences involved in modulation. J Bacteriol. 1989 Jul;171(7):4026–4030. [PMC free article] [PubMed]
  • Hall CV, vanCleemput M, Muench KH, Yanofsky C. The nucleotide sequence of the structural gene for Escherichia coli tryptophanyl-tRNA synthetase. J Biol Chem. 1982 Jun 10;257(11):6132–6136. [PubMed]
  • Kitten T, Willis DK. Suppression of a sensor kinase-dependent phenotype in Pseudomonas syringae by ribosomal proteins L35 and L20. J Bacteriol. 1996 Mar;178(6):1548–1555. [PMC free article] [PubMed]
  • LACEY BW. Antigenic modulation of Bordetella pertussis. J Hyg (Lond) 1960 Mar;58:57–93. [PMC free article] [PubMed]
  • Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):345–349. [PubMed]
  • Manoil C. Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol. 1990 Feb;172(2):1035–1042. [PMC free article] [PubMed]
  • Monack DM, Arico B, Rappuoli R, Falkow S. Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Mol Microbiol. 1989 Dec;3(12):1719–1728. [PubMed]
  • Morales VM, Bäckman A, Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene. 1991 Jan 2;97(1):39–47. [PubMed]
  • Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. [PubMed]
  • Petering H, Hammerschmidt S, Frosch M, van Putten JP, Ison CA, Robertson BD. Genes associated with meningococcal capsule complex are also found in Neisseria gonorrhoeae. J Bacteriol. 1996 Jun;178(11):3342–3345. [PMC free article] [PubMed]
  • Régnier P, Grunberg-Manago M, Portier C. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1. J Biol Chem. 1987 Jan 5;262(1):63–68. [PubMed]
  • Relman DA, Domenighini M, Tuomanen E, Rappuoli R, Falkow S. Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2637–2641. [PubMed]
  • Roy CR, Falkow S. Identification of Bordetella pertussis regulatory sequences required for transcriptional activation of the fhaB gene and autoregulation of the bvgAS operon. J Bacteriol. 1991 Apr;173(7):2385–2392. [PMC free article] [PubMed]
  • Scarlato V, Aricò B, Prugnola A, Rappuoli R. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J. 1991 Dec;10(12):3971–3975. [PubMed]
  • Scarlato V, Rappuoli R. Differential response of the bvg virulence regulon of Bordetella pertussis to MgSO4 modulation. J Bacteriol. 1991 Nov;173(22):7401–7404. [PMC free article] [PubMed]
  • Sprengart ML, Fuchs E, Porter AG. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 1996 Feb 1;15(3):665–674. [PubMed]
  • Steffen P, Goyard S, Ullmann A. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J. 1996 Jan 2;15(1):102–109. [PubMed]
  • Stibitz S. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants. J Bacteriol. 1994 Sep;176(18):5615–5621. [PMC free article] [PubMed]
  • Stibitz S, Yang MS. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J Bacteriol. 1991 Jul;173(14):4288–4296. [PMC free article] [PubMed]
  • Uhl MA, Miller JF. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1163–1167. [PubMed]
  • Uhl MA, Miller JF. BvgAS is sufficient for activation of the Bordetella pertussis ptx locus in Escherichia coli. J Bacteriol. 1995 Nov;177(22):6477–6485. [PMC free article] [PubMed]
  • Weiss AA, Falkow S. Genetic analysis of phase change in Bordetella pertussis. Infect Immun. 1984 Jan;43(1):263–269. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)