PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1996 June; 178(12): 3564–3571.
PMCID: PMC178127

Genetic analysis of the Mycobacterium smegmatis rpsL promoter.

Abstract

The DNA sequence of the promoter region of the Mycobacterium smegmatis rpsL gene, which encodes the S12 ribosomal protein, was determined. Primer extension analysis and S1 nuclease protection experiments identified the 5' end of the rpsL mRNA to be 199 bp upstream of the translation initiation codon. The rpsL promoter contained sequences upstream of this start point for transcription that were similar to the canonical hexamers found at the -10 and -35 regions of promoters recognized by Esigma70, the major form of RNA polymerase in Escherichia coli. To define the promoter of the rpsL gene, DNA fragments containing progressive deletions of the upstream region of the rpsL gene were inserted into a plasmid vector containing a promoterless xylE gene. These insertions revealed that the 200 bp of DNA sequence immediately upstream from the translation initiation codon was not essential for promoter function. In addition, 5' deletions removing all but 34 bp upstream of the transcription start point retained greater than 90% promoter activity, suggesting that the -35 hexamer was not essential for promoter activity. To determine which nucleotides were critical for promoter function, oligonucleotide-directed mutagenesis and mutagenic PCR amplification were used to produce point mutations in the region upstream of the start point of transcription. Single base substitutions in the -10 hexamer, but not in the -35 hexamer, severely reduced rpsL promoter activity in vivo. Within the -10 hexamer, nucleotide substitutions causing divergence from the E. Coli sigma70 consensus reduced promoter activity. The DNA sequence immediately upstream from the - 10 hexamer contained the TGn motif described as an extended -10 region in prokaryotic promoters. Mutations in this motif, in combination with a transition at either the -38 or -37 position within the -35 hexamer, severely reduced promoter activity, indicating that in the absence of a functional -35 region, the rpsL promoter is dependent on the TGn sequence upstream from the -10 hexamer. Comparison of the nucleotide sequence of the rpsL promoter region of M. smegmatis with the homologous sequences from Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium tuberculosis showed the presence in these slowly growing mycobacterial species of conserved promoter elements a similar distance upstream of the translation initiation codon of the rpsL gene, but these other mycobacterial promoters did not contain the extended -10 motif.

Full Text

The Full Text of this article is available as a PDF (570K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baquero F, Saldaña MA, Blazquez J, Palacios RG, Aguiar JM, Martinez JL, Vicente MF, Rubio C, Gómez-Lus R. Bleomycin-kanamycin resistance as a marker of the presence of transposon Tn5 in clinical strains of Escherichia coli. Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):995–998. [PubMed]
  • Bloom BR, Murray CJ. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. [PubMed]
  • Cadwell RC, Joyce GF. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 1992 Aug;2(1):28–33. [PubMed]
  • Chan B, Busby S. Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase. Gene. 1989 Dec 14;84(2):227–236. [PubMed]
  • Young DB, Cole ST. Leprosy, tuberculosis, and the new genetics. J Bacteriol. 1993 Jan;175(1):1–6. [PMC free article] [PubMed]
  • Curcic R, Dhandayuthapani S, Deretic V. Gene expression in mycobacteria: transcriptional fusions based on xylE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Mol Microbiol. 1994 Sep;13(6):1057–1064. [PubMed]
  • Funatsu G, Yaguchi M, Wittmann-Liebold B. Primary stucture of protein S12 from the small Escherichia coli ribosomal subunit. FEBS Lett. 1977 Jan 15;73(1):12–17. [PubMed]
  • Das Gupta SK, Bashyam MD, Tyagi AK. Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J Bacteriol. 1993 Aug;175(16):5186–5192. [PMC free article] [PubMed]
  • Harley CB, Reynolds RP. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. [PMC free article] [PubMed]
  • Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. [PMC free article] [PubMed]
  • Honoré N, Bergh S, Chanteau S, Doucet-Populaire F, Eiglmeier K, Garnier T, Georges C, Launois P, Limpaiboon T, Newton S, et al. Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif-Str regions. Mol Microbiol. 1993 Jan;7(2):207–214. [PubMed]
  • Husson RN, James BE, Young RA. Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol. 1990 Feb;172(2):519–524. [PMC free article] [PubMed]
  • Ingram C, Brawner M, Youngman P, Westpheling J. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol. 1989 Dec;171(12):6617–6624. [PMC free article] [PubMed]
  • Jacobs WR, Jr, Kalpana GV, Cirillo JD, Pascopella L, Snapper SB, Udani RA, Jones W, Barletta RG, Bloom BR. Genetic systems for mycobacteria. Methods Enzymol. 1991;204:537–555. [PubMed]
  • Keilty S, Rosenberg M. Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem. 1987 May 5;262(13):6389–6395. [PubMed]
  • Kenney TJ, Churchward G. Cloning and sequence analysis of the rpsL and rpsG genes of Mycobacterium smegmatis and characterization of mutations causing resistance to streptomycin. J Bacteriol. 1994 Oct;176(19):6153–6156. [PMC free article] [PubMed]
  • Kenney TJ, Moran CP., Jr Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):3329–3339. [PMC free article] [PubMed]
  • Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM. Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2608–2612. [PubMed]
  • Kremer L, Baulard A, Estaquier J, Content J, Capron A, Locht C. Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. J Bacteriol. 1995 Feb;177(3):642–653. [PMC free article] [PubMed]
  • Kumar A, Malloch RA, Fujita N, Smillie DA, Ishihama A, Hayward RS. The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter. J Mol Biol. 1993 Jul 20;232(2):406–418. [PubMed]
  • Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. [PubMed]
  • Labidi A, Mardis E, Roe BA, Wallace RJ., Jr Cloning and DNA sequence of the Mycobacterium fortuitum var fortuitum plasmid pAL5000. Plasmid. 1992 Mar;27(2):130–140. [PubMed]
  • Macdonald PM, Kutter E, Mosig G. Regulation of a bacteriophage T4 late gene, soc, which maps in an early region. Genetics. 1984 Jan;106(1):17–27. [PubMed]
  • Moyle H, Waldburger C, Susskind MM. Hierarchies of base pair preferences in the P22 ant promoter. J Bacteriol. 1991 Mar;173(6):1944–1950. [PMC free article] [PubMed]
  • Murray A, Winter N, Lagranderie M, Hill DF, Rauzier J, Timm J, Leclerc C, Moriarty KM, Gheorghiu M, Gicquel B. Expression of Escherichia coli beta-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol Microbiol. 1992 Nov;6(22):3331–3342. [PubMed]
  • Nakayama M, Fujita N, Ohama T, Osawa S, Ishihama A. Micrococcus luteus, a bacterium with a high genomic G + C content, contains Escherichia coli-type promoters. Mol Gen Genet. 1989 Sep;218(3):384–389. [PubMed]
  • Nesbit CE, Levin ME, Donnelly-Wu MK, Hatfull GF. Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol Microbiol. 1995 Sep;17(6):1045–1056. [PubMed]
  • Ohama T, Yamao F, Muto A, Osawa S. Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content. J Bacteriol. 1987 Oct;169(10):4770–4777. [PMC free article] [PubMed]
  • Ponnambalam S, Chan B, Busby S. Functional analysis of different sequence elements in the Escherichia coli galactose operon P2 promoter. Mol Microbiol. 1988 Mar;2(2):165–172. [PubMed]
  • Post LE, Arfsten AE, Reusser F, Nomura M. DNA sequences of promoter regions for the str and spc ribosomal protein operons in E. coli. Cell. 1978 Sep;15(1):215–229. [PubMed]
  • Predich M, Doukhan L, Nair G, Smith I. Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol. 1995 Jan;15(2):355–366. [PubMed]
  • Rieder HL, Cauthen GM, Comstock GW, Snider DE., Jr Epidemiology of tuberculosis in the United States. Epidemiol Rev. 1989;11:79–98. [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Sela S, Clark-Curtiss JE. Cloning and characterization of the Mycobacterium leprae putative ribosomal RNA promoter in Escherichia coli. Gene. 1991 Feb 1;98(1):123–127. [PubMed]
  • Shinnick TM. The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol. 1987 Mar;169(3):1080–1088. [PMC free article] [PubMed]
  • Stein DC. Plasmids with easily excisable xylE cassettes. Gene. 1992 Aug 1;117(1):157–158. [PubMed]
  • Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, et al. New use of BCG for recombinant vaccines. Nature. 1991 Jun 6;351(6326):456–460. [PubMed]
  • Strohl WR. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. [PMC free article] [PubMed]
  • Suzuki Y, Nagata A, Yamada T. Analysis of the promoter region in the rRNA operon from Mycobacterium bovis BCG. Antonie Van Leeuwenhoek. 1991 Jul;60(1):7–11. [PubMed]
  • Tabor S, Richardson CC. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. [PubMed]
  • Timm J, Perilli MG, Duez C, Trias J, Orefici G, Fattorini L, Amicosante G, Oratore A, Joris B, Frère JM, et al. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum beta-lactamase genes cloned from a natural isolate and a high-level beta-lactamase producer. Mol Microbiol. 1994 May;12(3):491–504. [PubMed]
  • Turner PC, Moyer RW. A PCR-based method for manipulation of the vaccinia virus genome that eliminates the need for cloning. Biotechniques. 1992 Nov;13(5):764–771. [PubMed]
  • Verma A, Kinger AK, Tyagi JS. Functional analysis of transcription of the Mycobacterium tuberculosis 16S rDNA-encoding gene. Gene. 1994 Oct 11;148(1):113–118. [PubMed]
  • Wu GJ, Cannon RE. Termination sequences in the control region of the Ad2-specific VARNA2 gene. J Biol Chem. 1986 Sep 25;261(27):12633–12642. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)