PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1996 May; 178(9): 2507–2513.
PMCID: PMC177972

Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication.

Abstract

The Rob protein, isolated on the basis of its ability to bind to the right arm of the Escherichia coli origin of chromosomal replication, is about 50% identical in amino acid sequence to SoxS and MarA, the direct regulators of the superoxide (soxRS) and multiple antibiotic resistance (mar) regulons, respectively. Having previously demonstrated that SoxS (as a MalE-SoxS fusion protein) and MarA are essentially identical in their abilities to activate in vitro transcription of genes of the sox-mar regulons, we investigated the properties of Rob as a transcriptional activator. We found that Rob (i) activates the transcription of zwf,fpr,fumC, micF, nfo, and sodA, (ii) requires a 21-bp soxbox-marbox-robbox sequence to activate zwf transcription, (iii) protects the soxbox/marbox/robbox from attack by DNase 1, (iv) is ambidextrous, i.e., requires the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF, (v) bends zwf and fumC DNA, and (vi) binds zwf and fumC DNA as a monomer. Since these transcription activation properties of Rob are virtually identical to those of MalE-SoxS and MarA, it appears as if the E. coli genome encodes three genes with the same functional capacity. However, in contrast to SoxS and MarA, whose syntheses are induced by specific environmental stimuli and elicit a clear defense response, Rob is expressed constitutively and its normal function is unknown.

Full Text

The Full Text of this article is available as a PDF (686K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amábile-Cuevas CF, Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res. 1991 Aug 25;19(16):4479–4484. [PMC free article] [PubMed]
  • Ariza RR, Cohen SP, Bachhawat N, Levy SB, Demple B. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1994 Jan;176(1):143–148. [PMC free article] [PubMed]
  • Ariza RR, Li Z, Ringstad N, Demple B. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol. 1995 Apr;177(7):1655–1661. [PMC free article] [PubMed]
  • Baker TA, Kornberg A. Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell. 1988 Oct 7;55(1):113–123. [PubMed]
  • Braus G, Argast M, Beck CF. Identification of additional genes on transposon Tn10: tetC and tetD. J Bacteriol. 1984 Nov;160(2):504–509. [PMC free article] [PubMed]
  • Brunelle A, Schleif R. Determining residue-base interactions between AraC protein and araI DNA. J Mol Biol. 1989 Oct 20;209(4):607–622. [PubMed]
  • Carra JH, Schleif RF. Variation of half-site organization and DNA looping by AraC protein. EMBO J. 1993 Jan;12(1):35–44. [PubMed]
  • Cohen SP, Hächler H, Levy SB. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol. 1993 Mar;175(5):1484–1492. [PMC free article] [PubMed]
  • Fawcett WP, Wolf RE., Jr Genetic definition of the Escherichia coli zwf "soxbox," the DNA binding site for SoxS-mediated induction of glucose 6-phosphate dehydrogenase in response to superoxide. J Bacteriol. 1995 Apr;177(7):1742–1750. [PMC free article] [PubMed]
  • Fawcett WP, Wolf RE., Jr Purification of a MalE-SoxS fusion protein and identification of the control sites of Escherichia coli superoxide-inducible genes. Mol Microbiol. 1994 Nov;14(4):669–679. [PubMed]
  • Gallegos MT, Michán C, Ramos JL. The XylS/AraC family of regulators. Nucleic Acids Res. 1993 Feb 25;21(4):807–810. [PMC free article] [PubMed]
  • Gambino L, Gracheck SJ, Miller PF. Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1993 May;175(10):2888–2894. [PMC free article] [PubMed]
  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6181–6185. [PubMed]
  • Hächler H, Cohen SP, Levy SB. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J Bacteriol. 1991 Sep;173(17):5532–5538. [PMC free article] [PubMed]
  • Hendrickson W, Schleif R. A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site. Proc Natl Acad Sci U S A. 1985 May;82(10):3129–3133. [PubMed]
  • Igarashi K, Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 1991 Jun 14;65(6):1015–1022. [PubMed]
  • Ishihama A. Protein-protein communication within the transcription apparatus. J Bacteriol. 1993 May;175(9):2483–2489. [PMC free article] [PubMed]
  • Jair KW, Fawcett WP, Fujita N, Ishihama A, Wolf RE., Jr Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Mol Microbiol. 1996 Jan;19(2):307–317. [PubMed]
  • Jair KW, Martin RG, Rosner JL, Fujita N, Ishihama A, Wolf RE., Jr Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol. 1995 Dec;177(24):7100–7104. [PMC free article] [PubMed]
  • Kim J, Zwieb C, Wu C, Adhya S. Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene. 1989 Dec 21;85(1):15–23. [PubMed]
  • Lark KG. Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J Mol Biol. 1972 Feb 28;64(1):47–60. [PubMed]
  • Li Z, Demple B. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J Biol Chem. 1994 Jul 15;269(28):18371–18377. [PubMed]
  • Martin RG, Jair KW, Wolf RE, Jr, Rosner JL. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J Bacteriol. 1996 Apr;178(8):2216–2223. [PMC free article] [PubMed]
  • Martin RG, Rosner JL. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5456–5460. [PubMed]
  • Nunoshiba T, Hidalgo E, Amábile Cuevas CF, Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol. 1992 Oct;174(19):6054–6060. [PMC free article] [PubMed]
  • Orchard K, May GE. An EMSA-based method for determining the molecular weight of a protein--DNA complex. Nucleic Acids Res. 1993 Jul 11;21(14):3335–3336. [PMC free article] [PubMed]
  • Rowley DL, Wolf RE., Jr Molecular characterization of the Escherichia coli K-12 zwf gene encoding glucose 6-phosphate dehydrogenase. J Bacteriol. 1991 Feb;173(3):968–977. [PMC free article] [PubMed]
  • Schollmeier K, Hillen W. Transposon Tn10 contains two structural genes with opposite polarity between tetA and IS10R. J Bacteriol. 1984 Nov;160(2):499–503. [PMC free article] [PubMed]
  • Skarstad K, Baker TA, Kornberg A. Strand separation required for initiation of replication at the chromosomal origin of E.coli is facilitated by a distant RNA--DNA hybrid. EMBO J. 1990 Jul;9(7):2341–2348. [PubMed]
  • Skarstad K, Thöny B, Hwang DS, Kornberg A. A novel binding protein of the origin of the Escherichia coli chromosome. J Biol Chem. 1993 Mar 15;268(8):5365–5370. [PubMed]
  • Sulavik MC, Gambino LF, Miller PF. The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med. 1995 May;1(4):436–446. [PMC free article] [PubMed]
  • Thompson JF, Landy A. Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 1988 Oct 25;16(20):9687–9705. [PMC free article] [PubMed]
  • Tsaneva IR, Weiss B. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J Bacteriol. 1990 Aug;172(8):4197–4205. [PMC free article] [PubMed]
  • Wu HM, Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. [PubMed]
  • Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J Bacteriol. 1991 May;173(9):2864–2871. [PMC free article] [PubMed]
  • Wu J, Weiss B. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol. 1992 Jun;174(12):3915–3920. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)