Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1996 March; 178(5): 1351–1362.
PMCID: PMC177810

p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon.


Pseudomonas putida F1 utilizes p-cumate (p-isopropylbenzoate) as a growth substrate by means of an eight-step catabolic pathway. A 35.75-kb DNA segment, within which the cmt operon encoding the catabolism of p-cumate is located, was cloned as four separate overlapping restriction fragments and mapped with restriction endonucleases. By examining enzyme activities in recombinant bacteria carrying these fragments and sub-cloned fragments, genes encoding most of the enzymes of the p-cumate pathway were located. Subsequent sequence analysis of 11,260 bp gave precise locations of the 12 genes of the cmt operon. The first three genes, cmtAaAbAc, and the sixth gene, cmtAd, encode the components of p-cumate 2,3-dioxygenase (ferredoxin reductase, large subunit of the terminal dioxygenase, small subunit of the terminal dioxygenase, and ferredoxin, respectively); these genes are separated by cmtC, which encodes 2,3-dihydroxy-p-cumate 3,4-dioxygenase, and cmtB, coding for 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase. The ring cleavage product, 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate, is acted on by a decarboxylase encoded by the seventh gene, cmtD, which is followed by a large open reading frame, cmtI, of unknown function. The next four genes, cmtEFHG, encode 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate hydrolase, 2-hydroxypenta-2,4-dienoate hydratase, 4-hydroxy-2-oxovalerate aldolase, and acetaldehyde dehydrogenase, respectively, which transform the decarboxylation product to amphibolic intermediates. The deduced amino acid sequences of all the cmt gene products except CmtD and CmtI have a recognizable but low level of identity with amino acid sequences of enzymes catalyzing analogous reactions in other catabolic pathways. This identity is highest for the last two enzymes of the pathway (4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase [acylating]), which have identities of 66 to 77% with the corresponding enzymes from other aromatic meta-cleavage pathways. Recombinant bacteria carrying certain restriction fragments bordering the cmt operon were found to transform indole to indigo. This reaction, known to be catalyzed by toluene 2,3-dioxygenase, led to the discovery that the tod operon, encoding the catabolism of toluene, is located 2.8 kb downstream from and in the same orientation as the cmt operon in P. putida F1.

Full Text

The Full Text of this article is available as a PDF (539K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alting-Mees MA, Short JM. pBluescript II: gene mapping vectors. Nucleic Acids Res. 1989 Nov 25;17(22):9494–9494. [PMC free article] [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Assinder SJ, Williams PA. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol. 1990;31:1–69. [PubMed]
  • Asturias JA, Díaz E, Timmis KN. The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene. 1995 Apr 14;156(1):11–18. [PubMed]
  • Asturias JA, Eltis LD, Prucha M, Timmis KN. Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. J Biol Chem. 1994 Mar 11;269(10):7807–7815. [PubMed]
  • Barnsley EA. Metabolism of 2,6-dimethylnaphthalene by flavobacteria. Appl Environ Microbiol. 1988 Feb;54(2):428–433. [PMC free article] [PubMed]
  • Benson D, Lipman DJ, Ostell J. GenBank. Nucleic Acids Res. 1993 Jul 1;21(13):2963–2965. [PMC free article] [PubMed]
  • Collinsworth WL, Chapman PJ, Dagley S. Stereospecific enzymes in the degradation of aromatic compounds by pseudomonas putida. J Bacteriol. 1973 Feb;113(2):922–931. [PMC free article] [PubMed]
  • Crawford RL, Bromley JW, Perkins-Olson PE. Catabolism of protocatechuate by Bacillus macerans. Appl Environ Microbiol. 1979 Mar;37(3):614–618. [PMC free article] [PubMed]
  • DAGLEY S, PATEL MD. Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem J. 1957 Jun;66(2):227–233. [PubMed]
  • Danganan CE, Ye RW, Daubaras DL, Xun L, Chakrabarty AM. Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Appl Environ Microbiol. 1994 Nov;60(11):4100–4106. [PMC free article] [PubMed]
  • DAVIS JB, RAYMOND RL. Oxidation of alkyl-substituted cyclic hydrocarbons by a Nocardia during growth on n-alkanes. Appl Microbiol. 1961 Sep;9:383–388. [PMC free article] [PubMed]
  • Defrank JJ, Ribbons DW. The p-cymene pathway in Pseudomonas putida PL: isolation of a dihydrodiol accumulated by a mutant. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1129–1135. [PubMed]
  • DeFrank JJ, Ribbons DW. p-cymene pathway in Pseudomonas putida: initial reactions. J Bacteriol. 1977 Mar;129(3):1356–1364. [PMC free article] [PubMed]
  • DeFrank JJ, Ribbons DW. p-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions. J Bacteriol. 1977 Mar;129(3):1365–1374. [PMC free article] [PubMed]
  • Ditta G, Stanfield S, Corbin D, Helinski DR. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. [PubMed]
  • Dretzen G, Bellard M, Sassone-Corsi P, Chambon P. A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem. 1981 Apr;112(2):295–298. [PubMed]
  • Eaton RW. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J Bacteriol. 1994 Dec;176(24):7757–7762. [PMC free article] [PubMed]
  • Eaton RW, Chapman PJ. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol. 1992 Dec;174(23):7542–7554. [PMC free article] [PubMed]
  • Eaton RW, Chapman PJ. Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol. 1995 Dec;177(23):6983–6988. [PMC free article] [PubMed]
  • Eaton RW, Karns JS. Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J Bacteriol. 1991 Feb;173(3):1215–1222. [PMC free article] [PubMed]
  • Eaton RW, Ribbons DW. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol. 1982 Jul;151(1):48–57. [PMC free article] [PubMed]
  • Eaton RW, Timmis KN. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol. 1986 Oct;168(1):123–131. [PMC free article] [PubMed]
  • Engesser KH, Rubio MA, Ribbons DW. Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 4-trifluoromethyl(TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains. Arch Microbiol. 1988 Jan;149(3):198–206. [PubMed]
  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. [PubMed]
  • Erickson BD, Mondello FJ. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol. 1992 May;174(9):2903–2912. [PMC free article] [PubMed]
  • Finette BA, Subramanian V, Gibson DT. Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol. 1984 Dec;160(3):1003–1009. [PMC free article] [PubMed]
  • Fukuda M, Yasukochi Y, Kikuchi Y, Nagata Y, Kimbara K, Horiuchi H, Takagi M, Yano K. Identification of the bphA and bphB genes of Pseudomonas sp. strains KKS102 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem Biophys Res Commun. 1994 Jul 29;202(2):850–856. [PubMed]
  • Gibson DT, Hensley M, Yoshioka H, Mabry TJ. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry. 1970 Mar 31;9(7):1626–1630. [PubMed]
  • Gibson DT, Koch JR, Kallio RE. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry. 1968 Jul;7(7):2653–2662. [PubMed]
  • Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. [PubMed]
  • Grunstein M, Hogness DS. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. [PubMed]
  • Guerry P, van Embden J, Falkow S. Molecular nature of two nonconjugative plasmids carrying drug resistance genes. J Bacteriol. 1974 Feb;117(2):619–630. [PMC free article] [PubMed]
  • Hall RM, Stokes HW. Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica. 1993;90(2-3):115–132. [PubMed]
  • Harayama S, Rekik M. Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol Gen Genet. 1993 May;239(1-2):81–89. [PubMed]
  • Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J Bacteriol. 1991 Dec;173(23):7540–7548. [PMC free article] [PubMed]
  • Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA, Timmis KN. Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. J Bacteriol. 1989 Sep;171(9):5048–5055. [PMC free article] [PubMed]
  • Hayase N, Taira K, Furukawa K. Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol. 1990 Feb;172(2):1160–1164. [PMC free article] [PubMed]
  • Hofer B, Backhaus S, Timmis KN. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene. 1994 Jun 24;144(1):9–16. [PubMed]
  • Holloway BW, Morgan AF. Genome organization in Pseudomonas. Annu Rev Microbiol. 1986;40:79–105. [PubMed]
  • Huang M, Oppermann FB, Steinbüchel A. Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway. FEMS Microbiol Lett. 1994 Dec 1;124(2):141–150. [PubMed]
  • Kabisch M, Fortnagel P. Nucleotide sequence of the metapyrocatechase II (catechol 2,3-oxygenase II) gene mpcII from Alcaligenes eutrophus JMP 222. Nucleic Acids Res. 1990 Sep 25;18(18):5543–5543. [PMC free article] [PubMed]
  • Keil H, Saint CM, Williams PA. Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene product. J Bacteriol. 1987 Feb;169(2):764–770. [PMC free article] [PubMed]
  • Kikuchi Y, Yasukochi Y, Nagata Y, Fukuda M, Takagi M. Nucleotide sequence and functional analysis of the meta-cleavage pathway involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol. 1994 Jul;176(14):4269–4276. [PMC free article] [PubMed]
  • Kim E, Zylstra GJ. Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1. J Bacteriol. 1995 Jun;177(11):3095–3103. [PMC free article] [PubMed]
  • Koga H, Yamaguchi E, Matsunaga K, Aramaki H, Horiuchi T. Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. J Biochem. 1989 Nov;106(5):831–836. [PubMed]
  • Lau PC, Bergeron H, Labbé D, Wang Y, Brousseau R, Gibson DT. Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene. 1994 Aug 19;146(1):7–13. [PubMed]
  • Liebergesell M, Steinbüchel A. Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem. 1992 Oct 1;209(1):135–150. [PubMed]
  • Madhyastha KM, Rangachari PN, Raghabendra Rao M, Bhattacharyya PK. Microbiological transformations of terpenes. XV. Enzyme systems in the catabolism of p-cymene in PL-strain. Indian J Biochem. 1968 Dec;5(4):167–173. [PubMed]
  • Marcotte P, Walsh C. Sequence of reactions which follows enzymatic oxidation of allylglycine. Biochemistry. 1978 Dec 26;17(26):5620–5626. [PubMed]
  • Mason JR, Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol. 1992;46:277–305. [PubMed]
  • Menn FM, Zylstra GJ, Gibson DT. Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene. 1991 Jul 31;104(1):91–94. [PubMed]
  • Miyachi N, Tanaka T, Suzuki T, Hotta Y, Omori T. Microbial oxidation of dimethylnaphthalene isomers. Appl Environ Microbiol. 1993 May;59(5):1504–1506. [PMC free article] [PubMed]
  • Mondello FJ. Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J Bacteriol. 1989 Mar;171(3):1725–1732. [PMC free article] [PubMed]
  • Morales VM, Bäckman A, Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene. 1991 Jan 2;97(1):39–47. [PubMed]
  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, de Mot R. Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol. 1995 Feb;177(3):676–687. [PMC free article] [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Neidle EL, Hartnett C, Ornston LN, Bairoch A, Rekik M, Harayama S. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol. 1991 Sep;173(17):5385–5395. [PMC free article] [PubMed]
  • Ninnekar HZ. Purification and properties of 2,3-dihydroxy-p-cumate-3,4-dioxygenase from Bacillus species. Biochem Int. 1992 Oct;28(1):97–103. [PubMed]
  • Nordlund I, Shingler V. Nucleotide sequences of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600. Biochim Biophys Acta. 1990 Jun 21;1049(2):227–230. [PubMed]
  • O'Connor CD, Humphreys GO. Expression of the Eco RI restriction-modification system and the construction of positive-selection cloning vectors. Gene. 1982 Dec;20(2):219–229. [PubMed]
  • Powlowski J, Sahlman L, Shingler V. Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. J Bacteriol. 1993 Jan;175(2):377–385. [PMC free article] [PubMed]
  • Priefert H, Hein S, Krüger N, Zeh K, Schmidt B, Steinbüchel A. Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism. J Bacteriol. 1991 Jul;173(13):4056–4071. [PMC free article] [PubMed]
  • Raymond RL, Jamison VW, Hudson JO. Microbial hydrocarbon co-oxidation. I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus Nocardia. Appl Microbiol. 1967 Jul;15(4):857–865. [PMC free article] [PubMed]
  • Royle PL, Matsumoto H, Holloway BW. Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol. 1981 Jan;145(1):145–155. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Sherman DH, Malpartida F, Bibb MJ, Kieser HM, Bibb MJ, Hopwood DA. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. [PubMed]
  • Shingler V, Powlowski J, Marklund U. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol. 1992 Feb;174(3):711–724. [PMC free article] [PubMed]
  • Suzuki M, Hayakawa T, Shaw JP, Rekik M, Harayama S. Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J Bacteriol. 1991 Mar;173(5):1690–1695. [PMC free article] [PubMed]
  • Taira K, Hirose J, Hayashida S, Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992 Mar 5;267(7):4844–4853. [PubMed]
  • Tan HM, Tang HY, Joannou CL, Abdel-Wahab NH, Mason JR. The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G+C content. Gene. 1993 Aug 16;130(1):33–39. [PubMed]
  • Thöny B, Hennecke H. The -24/-12 promoter comes of age. FEMS Microbiol Rev. 1989 Dec;5(4):341–357. [PubMed]
  • Wang Y, Rawlings M, Gibson DT, Labbé D, Bergeron H, Brousseau R, Lau PC. Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet. 1995 Mar 10;246(5):570–579. [PubMed]
  • Wheelis L. The genetics of dissimilarity pathways in Pseudomonas. Annu Rev Microbiol. 1975;29:505–524. [PubMed]
  • Wierenga RK, Terpstra P, Hol WG. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. [PubMed]
  • Wigmore GJ, Ribbons DW. p-Cymene pathway in Pseudomonas putida: selective enrichment of defective mutants by using halogenated substrate analogs. J Bacteriol. 1980 Aug;143(2):816–824. [PMC free article] [PubMed]
  • Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A. 1983 Feb;80(3):726–730. [PubMed]
  • Wyndham RC, Cashore AE, Nakatsu CH, Peel MC. Catabolic transposons. Biodegradation. 1994 Dec;5(3-4):323–342. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]
  • Yeh WK, Gibson DT, Liu TN. Toluene dioxygenase: a multicomponent enzyme system. Biochem Biophys Res Commun. 1977 Sep 9;78(1):401–410. [PubMed]
  • Ziffer H, Jerina DM, Gibson DT, Kobal VM. Absolute stereochemistry of the (+)-cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene produced from toluene by Pseudomonas putida. J Am Chem Soc. 1973 Jun 13;95(12):4048–4049. [PubMed]
  • Zylstra GJ, Gibson DT. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed]
  • Zylstra GJ, McCombie WR, Gibson DT, Finette BA. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol. 1988 Jun;54(6):1498–1503. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)