PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
 
Infect Immun. 1997 September; 65(9): 3939–3943.
PMCID: PMC175562

Use of cellular depletion analysis to examine circulation of immune effector function between the vagina and the periphery.

Abstract

Results from an animal model of vaginal candidiasis suggest that Candida-specific cell-mediated immunity in the systemic circulation does not mediate protection against vaginitis. The present study used cellular depletion analysis to examine the circulation of immune effector function between the vagina and the periphery. Results showed that anti-Thy-1.2 antibodies given intravenously to mice depleted Thy-1+ T lymphocytes in the systemic compartment but not in the vaginal mucosa, while the same antibodies injected intravaginally significantly reduced Thy-1+ T cells in both the vaginal and systemic compartments. These results support a lack or low level of circulation of immune effector function from the periphery to the vaginal mucosa.

Full Text

The Full Text of this article is available as a PDF (256K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Fidel PL, Jr, Lynch ME, Sobel JD. Candida-specific cell-mediated immunity is demonstrable in mice with experimental vaginal candidiasis. Infect Immun. 1993 May;61(5):1990–1995. [PMC free article] [PubMed]
  • Fidel PL, Jr, Lynch ME, Conaway DH, Tait L, Sobel JD. Mice immunized by primary vaginal Candida albicans infection develop acquired vaginal mucosal immunity. Infect Immun. 1995 Feb;63(2):547–553. [PMC free article] [PubMed]
  • Fidel PL, Jr, Lynch ME, Redondo-Lopez V, Sobel JD, Robinson R. Systemic cell-mediated immune reactivity in women with recurrent vulvovaginal candidiasis. J Infect Dis. 1993 Dec;168(6):1458–1465. [PubMed]
  • Fidel PL, Jr, Lynch ME, Sobel JD. Candida-specific Th1-type responsiveness in mice with experimental vaginal candidiasis. Infect Immun. 1993 Oct;61(10):4202–4207. [PMC free article] [PubMed]
  • Fidel PL, Jr, Lynch ME, Sobel JD. Effects of preinduced Candida-specific systemic cell-mediated immunity on experimental vaginal candidiasis. Infect Immun. 1994 Mar;62(3):1032–1038. [PMC free article] [PubMed]
  • Fidel PL, Jr, Lynch ME, Sobel JD. Circulating CD4 and CD8 T cells have little impact on host defense against experimental vaginal candidiasis. Infect Immun. 1995 Jul;63(7):2403–2408. [PMC free article] [PubMed]
  • Fidel PL, Jr, Wolf NA, KuKuruga MA. T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery. Infect Immun. 1996 Sep;64(9):3793–3799. [PMC free article] [PubMed]
  • Fischer A, Ballet JJ, Griscelli C. Specific inhibition of in vitro Candida-induced lymphocyte proliferation by polysaccharidic antigens present in the serum of patients with chronic mucocutaneous candidiasis. J Clin Invest. 1978 Nov;62(5):1005–1013. [PMC free article] [PubMed]
  • Fong IW, McCleary P, Read S. Cellular immunity of patients with recurrent or refractory vulvovaginal moniliasis. Am J Obstet Gynecol. 1992 Mar;166(3):887–890. [PubMed]
  • Hocini H, Barra A, Bélec L, Iscaki S, Preud'homme JL, Pillot J, Bouvet JP. Systemic and secretory humoral immunity in the normal human vaginal tract. Scand J Immunol. 1995 Aug;42(2):269–274. [PubMed]
  • Ibraghimov AR, Sacco RE, Sandor M, Iakoubov LZ, Lynch RG. Resident CD4+ alpha beta T cells of the murine female genital tract: a phenotypically distinct T cell lineage that rapidly proliferates in response to systemic T cell activation stimuli. Int Immunol. 1995 Nov;7(11):1763–1769. [PubMed]
  • Maloy KJ, Donachie AM, Mowat AM. Induction of Th1 and Th2 CD4+ T cell responses by oral or parenteral immunization with ISCOMS. Eur J Immunol. 1995 Oct;25(10):2835–2841. [PubMed]
  • Mowat AM, Maloy KJ, Donachie AM. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens. Immunology. 1993 Dec;80(4):527–534. [PubMed]
  • Parr MB, Parr EL. Langerhans cells and T lymphocyte subsets in the murine vagina and cervix. Biol Reprod. 1991 Mar;44(3):491–498. [PubMed]
  • Paterson PY, Semo R, Blumenschein G, Swelstad J. Mucocutaneous candidiasis, anergy and a plasma inhibitor of cellular immunity: reversal after amphotericin B therapy. Clin Exp Immunol. 1971 Nov;9(5):595–602. [PubMed]
  • Romani L, Mencacci A, Cenci E, Spaccapelo R, Mosci P, Puccetti P, Bistoni F. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. J Immunol. 1993 Feb 1;150(3):925–931. [PubMed]
  • Romani L, Mocci S, Bietta C, Lanfaloni L, Puccetti P, Bistoni F. Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun. 1991 Dec;59(12):4647–4654. [PMC free article] [PubMed]
  • Thapar MA, Parr EL, Bozzola JJ, Parr MB. Secretory immune responses in the mouse vagina after parenteral or intravaginal immunization with an immunostimulating complex (ISCOM). Vaccine. 1991 Feb;9(2):129–133. [PubMed]
  • Thapar MA, Parr EL, Parr MB. Secretory immune responses in mouse vaginal fluid after pelvic, parenteral or vaginal immunization. Immunology. 1990 May;70(1):121–125. [PubMed]
  • Wu HY, Russell MW. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun. 1993 Jan;61(1):314–322. [PMC free article] [PubMed]
  • Xu-Amano J, Jackson RJ, Fujihashi K, Kiyono H, Staats HF, McGhee JR. Helper Th1 and Th2 cell responses following mucosal or systemic immunization with cholera toxin. Vaccine. 1994 Aug;12(10):903–911. [PubMed]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)