Search tips
Search criteria 


Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
Infect Immun. 1996 July; 64(7): 2752–2764.
PMCID: PMC174136

Infection of rabbit Peyer's patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium.


In order to invade the colonic mucosa, the bacterial pathogen Shigella flexneri must find a site of entry. Experiments with the rabbit ligated intestinal loop model described here confirm that M cells of the follicle-associated epithelium (FAE) that covers lymphoid structures of the Peyer's patches represent a major site of entry for invasive microorganisms. In addition, in an isogenic Shigella background, expression of an adhesive phenotype, or of an invasive phenotype, is required for bacteria to efficiently colonize the FAE. A nonadhesive, noninvasive mutant barely interacted with FAE. Adhesive and invasive strains induced dramatic but different alterations on FAE. Invasive strain M90T caused major inflammation-mediated tissue destruction after 8 h of infection. Adhesive strain BS15 caused limited inflammation, but major architectural changes, characterized by an increase in the size of M cells that became stretched over large pockets containing an increased number of mononuclear cells, were observed. M cells progressively occupied large surface areas of the FAE at the expense of enterocytes. This contributed to enterocytes losing contact with the lumen. These experiments demonstrate that various remodeling patterns may occur in Peyer's patches in response to bacterial pathogens, depending on the virulence phenotype expressed by the pathogenic strain.

Full Text

The Full Text of this article is available as a PDF (5.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adam T, Arpin M, Prévost MC, Gounon P, Sansonetti PJ. Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J Cell Biol. 1995 Apr;129(2):367–381. [PMC free article] [PubMed]
  • Allaoui A, Mounier J, Prévost MC, Sansonetti PJ, Parsot C. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol Microbiol. 1992 Jun;6(12):1605–1616. [PubMed]
  • Bernardini ML, Mounier J, d'Hauteville H, Coquis-Rondon M, Sansonetti PJ. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A. 1989 May;86(10):3867–3871. [PubMed]
  • Clerc P, Sansonetti PJ. Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect Immun. 1987 Nov;55(11):2681–2688. [PMC free article] [PubMed]
  • Formal SB, Gemski P, Jr, Giannella RA, Austin S. Mechanisms of Shigella pathogenesis. Am J Clin Nutr. 1972 Dec;25(12):1427–1432. [PubMed]
  • Giannasca PJ, Neutra MR. Interactions of microorganisms with intestinal M cells: mucosal invasion and induction of secretory immunity. Infect Agents Dis. 1993 Aug;2(4):242–248. [PubMed]
  • Hermant D, Ménard R, Arricau N, Parsot C, Popoff MY. Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells. Mol Microbiol. 1995 Aug;17(4):781–789. [PubMed]
  • Inman LR, Cantey JR. Specific adherence of Escherichia coli (strain RDEC-1) to membranous (M) cells of the Peyer's patch in Escherichia coli diarrhea in the rabbit. J Clin Invest. 1983 Jan;71(1):1–8. [PMC free article] [PubMed]
  • Inman LR, Cantey JR. Peyer's patch lymphoid follicle epithelial adherence of a rabbit enteropathogenic Escherichia coli (strain RDEC-1). Role of plasmid-mediated pili in initial adherence. J Clin Invest. 1984 Jul;74(1):90–95. [PMC free article] [PubMed]
  • Jacob E, Baker SJ, Swaminathan SP. 'M' cells in the follicle-associated epithelium of the human colon. Histopathology. 1987 Sep;11(9):941–952. [PubMed]
  • Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med. 1994 Jul 1;180(1):15–23. [PMC free article] [PubMed]
  • Kaniga K, Tucker S, Trollinger D, Galán JE. Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J Bacteriol. 1995 Jul;177(14):3965–3971. [PMC free article] [PubMed]
  • Kraehenbuhl JP, Neutra MR. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev. 1992 Oct;72(4):853–879. [PubMed]
  • Labrec EH, Schneider H, Magnani TJ, Formal SB. EPITHELIAL CELL PENETRATION AS AN ESSENTIAL STEP IN THE PATHOGENESIS OF BACILLARY DYSENTERY. J Bacteriol. 1964 Nov;88(5):1503–1518. [PMC free article] [PubMed]
  • Mantis N, Prévost MC, Sansonetti P. Analysis of epithelial cell stress response during infection by Shigella flexneri. Infect Immun. 1996 Jul;64(7):2474–2482. [PMC free article] [PubMed]
  • Marcial MA, Madara JL. Cryptosporidium: cellular localization, structural analysis of absorptive cell-parasite membrane-membrane interactions in guinea pigs, and suggestion of protozoan transport by M cells. Gastroenterology. 1986 Mar;90(3):583–594. [PubMed]
  • Marco AJ, Domingo M, Prats M, Briones V, Pumarola M, Dominguez L. Pathogenesis of lymphoid lesions in murine experimental listeriosis. J Comp Pathol. 1991 Jul;105(1):1–15. [PubMed]
  • Meitert T, Pencu E, Ciudin L, Tonciu M. Vaccine strain Sh. flexneri T32-Istrati. Studies in animals and in volunteers. Antidysentery immunoprophylaxis and immunotherapy by live vaccine Vadizen (Sh. flexneri T32-Istrati). Arch Roum Pathol Exp Microbiol. 1984 Jul-Dec;43(3-4):251–278. [PubMed]
  • Mel DM, Terzin AL, Vuksić L. Studies on vaccination against bacillary dysentery. 3. Effective oral immunization against Shigella flexneri 2a in a field trial. Bull World Health Organ. 1965;32(5):647–655. [PubMed]
  • Ménard R, Sansonetti P, Parsot C. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J. 1994 Nov 15;13(22):5293–5302. [PubMed]
  • Mounier J, Vasselon T, Hellio R, Lesourd M, Sansonetti PJ. Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect Immun. 1992 Jan;60(1):237–248. [PMC free article] [PubMed]
  • Neutra MR, Kraehenbuhl JP. Transepithelial transport and mucosal defence I: the role of M cells. Trends Cell Biol. 1992 May;2(5):134–138. [PubMed]
  • O'Leary AD, Sweeney EC. Lymphoglandular complexes of the colon: structure and distribution. Histopathology. 1986 Mar;10(3):267–283. [PubMed]
  • Owen RL, Piazza AJ, Ermak TH. Ultrastructural and cytoarchitectural features of lymphoreticular organs in the colon and rectum of adult BALB/c mice. Am J Anat. 1991 Jan;190(1):10–18. [PubMed]
  • Owen RL. M cells--entryways of opportunity for enteropathogens. J Exp Med. 1994 Jul 1;180(1):7–9. [PMC free article] [PubMed]
  • Owen RL, Allen CL, Stevens DP. Phagocytosis of Giardia muris by macrophages in Peyer's patch epithelium in mice. Infect Immun. 1981 Aug;33(2):591–601. [PMC free article] [PubMed]
  • Perdomo OJ, Cavaillon JM, Huerre M, Ohayon H, Gounon P, Sansonetti PJ. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med. 1994 Oct 1;180(4):1307–1319. [PMC free article] [PubMed]
  • Perdomo JJ, Gounon P, Sansonetti PJ. Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. J Clin Invest. 1994 Feb;93(2):633–643. [PMC free article] [PubMed]
  • Phalipon A, Kaufmann M, Michetti P, Cavaillon JM, Huerre M, Sansonetti P, Kraehenbuhl JP. Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J Exp Med. 1995 Sep 1;182(3):769–778. [PMC free article] [PubMed]
  • Regoli M, Borghesi C, Bertelli E, Nicoletti C. A morphological study of the lymphocyte traffic in Peyer's patches after an in vivo antigenic stimulation. Anat Rec. 1994 May;239(1):47–54. [PubMed]
  • Sansonetti PJ. Genetic and molecular basis of epithelial cell invasion by Shigella species. Rev Infect Dis. 1991 Mar-Apr;13 (Suppl 4):S285–S292. [PubMed]
  • Sansonetti PJ, Arondel J, Cavaillon JM, Huerre M. Role of interleukin-1 in the pathogenesis of experimental shigellosis. J Clin Invest. 1995 Aug;96(2):884–892. [PMC free article] [PubMed]
  • Sansonetti PJ, Arondel J, Fontaine A, d'Hauteville H, Bernardini ML. OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine. 1991 Jun;9(6):416–422. [PubMed]
  • Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun. 1982 Mar;35(3):852–860. [PMC free article] [PubMed]
  • Sansonetti PJ, Mounier J, Prévost MC, Mège RM. Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell. 1994 Mar 11;76(5):829–839. [PubMed]
  • Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun. 1986 Feb;51(2):461–469. [PMC free article] [PubMed]
  • Savidge TC, Smith MW, James PS, Aldred P. Salmonella-induced M-cell formation in germ-free mouse Peyer's patch tissue. Am J Pathol. 1991 Jul;139(1):177–184. [PubMed]
  • Wassef JS, Keren DF, Mailloux JL. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun. 1989 Mar;57(3):858–863. [PMC free article] [PubMed]
  • Zychlinsky A, Fitting C, Cavaillon JM, Sansonetti PJ. Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest. 1994 Sep;94(3):1328–1332. [PMC free article] [PubMed]
  • Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992 Jul 9;358(6382):167–169. [PubMed]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)