PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of transbThe Royal Society PublishingPhilosophical Transactions BAboutBrowse By SubjectAlertsFree Trial
 
Philos Trans R Soc Lond B Biol Sci. 2004 March 29; 359(1443): 409–420.
PMCID: PMC1693335

Error propagation and scaling for tropical forest biomass estimates.

Abstract

The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 10(4) m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass.

Full Text

The Full Text of this article is available as a PDF (166K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baker Timothy R, Phillips Oliver L, Malhi Yadvinder, Almeida Samuel, Arroyo Luzmila, Di Fiore Anthony, Erwin Terry, Higuchi Niro, Killeen Timothy J, Laurance Susan G, et al. Increasing biomass in Amazonian forest plots. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):353–365. [PMC free article] [PubMed]
  • Brown Sandra. Measuring, monitoring, and verification of carbon benefits for forest-based projects. Philos Trans A Math Phys Eng Sci. 2002 Aug 15;360(1797):1669–1683. [PubMed]
  • Condit Richard, Pitman Nigel, Leigh Egbert G, Jr, Chave Jérôme, Terborgh John, Foster Robin B, Núez Percy, Aguilar Salomón, Valencia Renato, Villa Gorky, et al. Beta-diversity in tropical forest trees. Science. 2002 Jan 25;295(5555):666–669. [PubMed]
  • Cramer Wolfgang, Bondeau Alberte, Schaphoff Sibyll, Lucht Wolfgang, Smith Benjamin, Sitch Stephen. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):331–343. [PMC free article] [PubMed]
  • Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol. 2000 Aug;15(8):332–337. [PubMed]
  • Phillips OL, Gentry AH. Increasing turnover through time in tropical forests. Science. 1994 Feb 18;263(5149):954–958. [PubMed]
  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots . Science. 1998 Oct 16;282(5388):439–442. [PubMed]
  • Phillips Oliver L, Vásquez Martínez Rodolfo, Arroyo Luzmila, Baker Timothy R, Killeen Timothy, Lewis Simon L, Malhi Yadvinder, Monteagudo Mendoza Abel, Neill David, Núez Vargas Percy, et al. Increasing dominance of large lianas in Amazonian forests. Nature. 2002 Aug 15;418(6899):770–774. [PubMed]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society