Search tips
Search criteria 


Logo of procbThe Royal Society PublishingProceedings BAboutBrowse by SubjectAlertsFree Trial
Proc Biol Sci. 2002 January 7; 269(1486): 37–42.
PMCID: PMC1690860

Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds.


The Hawaiian honeycreepers are a dramatic example of adaptive radiation but contrast with the four other songbird lineages that successfully colonized the Hawaiian archipelago and failed to undergo similar diversification. To explore the processes that produced the diversity dichotomy in this insular fauna, we compared clade age and morphological diversity between the speciose honeycreepers and the comparatively depauperate Hawaiian thrushes. Mitochondrial-DNA-based genetic distances between these Hawaiian clades and their continental sister taxa indicate that the ancestral thrush colonized the Hawaiian Islands as early as the common ancestor of the honeycreepers. This similar timing of colonization indicates that the marked difference in diversity between the Hawaiian honeycreeper and thrush clades is unlikely to result from differences in these clades' tenures within the archipelago. If time cannot explain the contrasting diversities of these taxa, then an intrinsic, clade-specific trait may have fostered the honeycreeper radiation. As the honeycreepers have diversified most dramatically in morphological characters related to resource utilization, we used principal components analyses of bill characters to compare the magnitudes of morphological variation in the ancestral clades from which the Hawaiian honeycreeper and thrush lineages are derived, the Carduelini and Turdinae respectively. Although the Carduelini share a more recent common ancestor and have a lower species diversity than the Turdinae, these finch-like relatives of the honeycreepers exhibit significantly greater variation in bill morphology than do the continental relatives of the Hawaiian thrushes. The higher magnitude of morphological variation in the non-Hawaiian Carduelini suggests that the honeycreepers fall within a clade exhibiting a generally high evolutionary flexibility in bill morphology. Accordingly, although the magnitude of bill variation among the honeycreepers is similar to that of the entire passerine radiation, this dramatic morphological radiation represents an extreme manifestation of a general clade-specific ability to evolve novel morphologies.

Full Text

The Full Text of this article is available as a PDF (170K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Fleischer RC, McIntosh CE, Tarr CL. Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol. 1998 Apr;7(4):533–545. [PubMed]
  • Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. [PubMed]
  • Lovette IJ, Bermingham E. Explosive speciation in the New World Dendroica warblers. Proc Biol Sci. 1999 Aug 22;266(1429):1629–1629. [PMC free article]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society