Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1997 December; 63(12): 4729–4733.
PMCID: PMC168796

Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh.


The Archaea present in salt marsh sediment samples from a tidal creek and from an adjacent area of vegetative marshland, both of which showed active methanogenesis and sulfate reduction, were sampled by using 16S rRNA gene libraries created with Archaea-specific primers. None of the sequences were the same as reference sequences from cultured taxa, although some were closely related to sequences from methanogens previously isolated from marine sediments. A wide range of Euryarchaeota sequences were recovered, but no sequences from Methanococcus, Methanobacterium, or the Crenarchaeota were recovered. Clusters of closely related sequences were common and generally contained sequences from both sites, suggesting that some related organisms were present in both samples. Recovery of sequences closely related to those of methanogens such as Methanococcoides and Methanolobus, which can use substrates other than hydrogen, provides support for published hypotheses that such methanogens are probably important in sulfate-rich sediments and identifies some likely candidates. Sequences closely related to those of methanogens such as Methanoculleus and Methanogenium, which are capable of using hydrogen, were also discovered, in agreement with previous inhibitor and process measurements suggesting that these taxa are present at low levels of activity. More surprisingly, we recovered a variety of sequences closely related to those from different halophilic Archaea and a cluster of divergent sequences specifically related to the marine group II archaeal sequences recently shown by PCR and probing to have a cosmopolitan distribution in marine samples.

Full Text

The Full Text of this article is available as a PDF (152K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abram JW, Nedwell DB. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment. Arch Microbiol. 1978 Apr 27;117(1):93–97. [PubMed]
  • Abram JW, Nedwell DB. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch Microbiol. 1978 Apr 27;117(1):89–92. [PubMed]
  • Banat IM, Lindström EB, Nedwell DB, Balba MT. Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl Environ Microbiol. 1981 Dec;42(6):985–992. [PMC free article] [PubMed]
  • DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685–5689. [PubMed]
  • DeLong EF, Wu KY, Prézelin BB, Jovine RV. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. [PubMed]
  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. [PMC free article] [PubMed]
  • Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol. 1991 Sep;13(3):171–174. [PubMed]
  • Embley TM, Finlay BJ, Thomas RH, Dyal PL. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol. 1992 Jul;138(7):1479–1487. [PubMed]
  • Franklin MJ, Wiebe WJ, Whitman WB. Populations of methanogenic bacteria in a georgia salt marsh. Appl Environ Microbiol. 1988 May;54(5):1151–1157. [PMC free article] [PubMed]
  • Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992 Mar 12;356(6365):148–149. [PubMed]
  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. [PubMed]
  • Gottschal JC. Some reflections on microbial competitiveness among heterotrophic bacteria. Antonie Van Leeuwenhoek. 1985;51(5-6):473–494. [PubMed]
  • Holben William E, Jansson Janet K, Chelm Barry K, Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. [PMC free article] [PubMed]
  • Jones WJ, Nagle DP, Jr, Whitman WB. Methanogens and the diversity of archaebacteria. Microbiol Rev. 1987 Mar;51(1):135–177. [PMC free article] [PubMed]
  • Kusukawa N, Uemori T, Asada K, Kato I. Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. Biotechniques. 1990 Jul;9(1):66–72. [PubMed]
  • Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. [PMC free article] [PubMed]
  • Martens CS, Berner RA. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science. 1974 Sep 27;185(4157):1167–1169. [PubMed]
  • McInerney JO, Wilkinson M, Patching JW, Embley TM, Powell R. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol. 1995 Apr;61(4):1646–1648. [PMC free article] [PubMed]
  • Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol. 1994 May;60(5):1572–1580. [PMC free article] [PubMed]
  • Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Isolation of extreme halophiles from seawater. Appl Environ Microbiol. 1979 Jul;38(1):164–165. [PMC free article] [PubMed]
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. [PubMed]
  • Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. [PMC free article] [PubMed]
  • Selenska S, Klingmüller W. DNA recovery and direct detection of Tn5 sequences from soil. Lett Appl Microbiol. 1991 Jul;13(1):21–24. [PubMed]
  • Senior E, Lindström EB, Banat IM, Nedwell DB. Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the East coast of the United kingdom. Appl Environ Microbiol. 1982 May;43(5):987–996. [PMC free article] [PubMed]
  • Sowers KR, Baron SF, Ferry JG. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments. Appl Environ Microbiol. 1984 May;47(5):971–978. [PMC free article] [PubMed]
  • Tsai YL, Olson BH. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991 Apr;57(4):1070–1074. [PMC free article] [PubMed]
  • Winfrey MR, Ward DM. Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol. 1983 Jan;45(1):193–199. [PMC free article] [PubMed]
  • Winfrey MR, Zeikus JG. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol. 1977 Feb;33(2):275–281. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)