Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1997 November; 63(11): 4516–4522.
PMCID: PMC168770

Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.


A quantitative molecular technique was developed for rapid analysis of microbial community diversity in various environments. The technique employed PCR in which one of the two primers used was fluorescently labeled at the 5' end and was used to amplify a selected region of bacterial genes encoding 16S rRNA from total community DNA. The PCR product was digested with restriction enzymes, and the fluorescently labeled terminal restriction fragment was precisely measured by using an automated DNA sequencer. Computer-simulated analysis of terminal restriction fragment length polymorphisms (T-RFLP) for 1,002 eubacterial sequences showed that with proper selection of PCR primers and restriction enzymes, 686 sequences could be PCR amplified and classified into 233 unique terminal restriction fragment lengths or "ribotypes." Using T-RFLP, we were able to distinguish all bacterial strains in a model bacterial community, and the pattern was consistent with the predicted outcome. Analysis of complex bacterial communities with T-RFLP revealed high species diversity in activated sludge, bioreactor sludge, aquifer sand, and termite guts; as many as 72 unique ribotypes were found in these communities, with 36 ribotypes observed in the termite guts. The community T-RFLP patterns were numerically analyzed and hierarchically clustered. The pattern derived from termite guts was found to be distinctly different from the patterns derived from the other three communities. Overall, our results demonstrated that T-RFLP is a powerful tool for assessing the diversity of complex bacterial communities and for rapidly comparing the community structure and diversity of different ecosystems.

Full Text

The Full Text of this article is available as a PDF (679K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. [PMC free article] [PubMed]
  • Avaniss-Aghajani E, Jones K, Holtzman A, Aronson T, Glover N, Boian M, Froman S, Brunk CF. Molecular technique for rapid identification of mycobacteria. J Clin Microbiol. 1996 Jan;34(1):98–102. [PMC free article] [PubMed]
  • Barns SM, Fundyga RE, Jeffries MW, Pace NR. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609–1613. [PubMed]
  • Bond PL, Hugenholtz P, Keller J, Blackall LL. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol. 1995 May;61(5):1910–1916. [PMC free article] [PubMed]
  • Brunk CF, Avaniss-Aghajani E, Brunk CA. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl Environ Microbiol. 1996 Mar;62(3):872–879. [PMC free article] [PubMed]
  • Clayton RA, Sutton G, Hinkle PS, Jr, Bult C, Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol. 1995 Jul;45(3):595–599. [PubMed]
  • Dunbar J, White S, Forney L. Genetic Diversity through the Looking Glass: Effect of Enrichment Bias. Appl Environ Microbiol. 1997 Apr;63(4):1326–1331. [PMC free article] [PubMed]
  • Evans PJ, Mang DT, Young LY. Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures. Appl Environ Microbiol. 1991 Feb;57(2):450–454. [PMC free article] [PubMed]
  • Farrelly V, Rainey FA, Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol. 1995 Jul;61(7):2798–2801. [PMC free article] [PubMed]
  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. [PubMed]
  • Kopczynski ED, Bateson MM, Ward DM. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. [PMC free article] [PubMed]
  • Laguerre G, Allard MR, Revoy F, Amarger N. Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes. Appl Environ Microbiol. 1994 Jan;60(1):56–63. [PMC free article] [PubMed]
  • Lee DH, Zo YG, Kim SJ. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol. 1996 Sep;62(9):3112–3120. [PMC free article] [PubMed]
  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR. The Ribosomal Database Project (RDP). Nucleic Acids Res. 1996 Jan 1;24(1):82–85. [PMC free article] [PubMed]
  • Moyer CL, Dobbs FC, Karl DM. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. [PMC free article] [PubMed]
  • Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol. 1995 Sep;164(3):165–172. [PubMed]
  • Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993 Mar;59(3):695–700. [PMC free article] [PubMed]
  • Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA. Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol. 1996 Feb;62(2):347–352. [PMC free article] [PubMed]
  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol. 1992 Sep;58(9):2717–2722. [PMC free article] [PubMed]
  • Reysenbach AL, Giver LJ, Wickham GS, Pace NR. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol. 1992 Oct;58(10):3417–3418. [PMC free article] [PubMed]
  • Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991 Jul;173(14):4371–4378. [PMC free article] [PubMed]
  • States DJ. Molecular sequence accuracy: analysing imperfect data. Trends Genet. 1992 Feb;8(2):52–55. [PubMed]
  • Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol. 1993 Aug;59(8):2657–2665. [PMC free article] [PubMed]
  • Torsvik V, Goksøyr J, Daae FL. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. [PMC free article] [PubMed]
  • Tötsch M, Brömmelkamp E, Stücker A, Fille M, Gross R, Wiesner P, Schmid KW, Böcker W, Dockhorn-Dworniczak B. Identification of mycobacteria to the species level by automated restriction enzyme fragment length polymorphism analysis. Virchows Arch. 1995;427(1):85–89. [PubMed]
  • van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol. 1995 Apr;61(4):1246–1251. [PMC free article] [PubMed]
  • Völsch A, Nader WF, Geiss HK, Nebe G, Birr C. Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Appl Environ Microbiol. 1990 Aug;56(8):2430–2435. [PMC free article] [PubMed]
  • Wagner M, Erhart R, Manz W, Amann R, Lemmer H, Wedi D, Schleifer KH. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol. 1994 Mar;60(3):792–800. [PMC free article] [PubMed]
  • Ward DM, Weller R, Bateson MM. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990 May 3;345(6270):63–65. [PubMed]
  • Zheng D, Alm EW, Stahl DA, Raskin L. Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol. 1996 Dec;62(12):4504–4513. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)