Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1996 January; 62(1): 230–236.
PMCID: PMC167791

Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39.


Three strains of Comamonas testosteroni were isolated from river sediment for the ability to degrade phenanthrene; two of the strains also grew on naphthalene, and one strain also grew on anthracene. The homology of the genes for polycyclic aromatic hydrocarbon degradation in these strains to the classical genes (nah) for naphthalene degradation from Pseudomonas putida NCIB 9816-4 was determined. The three C. testosteroni strains showed no homology to the nah gene probe even under low-stringency conditions. The genes for naphthalene and phenanthrene degradation were cloned from one of the three C. testosteroni strains. Two cosmid clones expressing polycyclic aromatic hydrocarbon dioxygenase activity were identified from a library prepared with genomic DNA from C. testosteroni GZ39. The genes coding for the first two enzymes in the catabolic pathway, phenanthrene dioxygenase and cis-phenanthrene dihydrodiol dehydrogenase, were localized to a 5.4-kb NcoI-PstI fragment by subcloning and gene expression experiments. Further subcloning and analysis revealed a novel organization of the genes, with the gene for cis-phenanthrene dihydrodiol dehydrogenase located between the genes for the individual phenanthrene dioxygenase components. A Southern blot with the cloned genes from C. testosteroni GZ39 confirmed that these genes are distinct from those found in P. putida NCIB 9816-4. Southern blots also demonstrated that C. testosteroni GZ38A possesses genes for phenanthrene degradation that are similar to those cloned from C. testosteroni GZ39. However, C. testosteroni GZ42 possesses genes for phenanthrene degradation that are not homologous to those cloned from C. testosteroni GZ39. This suggests that there are at least two different sets of genes for the degradation of phenanthrene among the three C. testosteroni strains.

Full Text

The Full Text of this article is available as a PDF (234K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed]
  • Boldrin B, Tiehm A, Fritzsche C. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol. 1993 Jun;59(6):1927–1930. [PMC free article] [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Davies JI, Evans WC. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J. 1964 May;91(2):251–261. [PubMed]
  • Denome SA, Stanley DC, Olson ES, Young KD. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol. 1993 Nov;175(21):6890–6901. [PMC free article] [PubMed]
  • Eaton RW. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid. J Bacteriol. 1994 Dec;176(24):7757–7762. [PMC free article] [PubMed]
  • Eaton RW, Chapman PJ. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol. 1992 Dec;174(23):7542–7554. [PMC free article] [PubMed]
  • Ensley BD, Gibson DT. Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J Bacteriol. 1983 Aug;155(2):505–511. [PMC free article] [PubMed]
  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Fredrickson JK, Brockman FJ, Workman DJ, Li SW, Stevens TO. Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol. 1991 Mar;57(3):796–803. [PMC free article] [PubMed]
  • García-Valdés E, Cozar E, Rotger R, Lalucat J, Ursing J. New naphthalene-degrading marine Pseudomonas strains. Appl Environ Microbiol. 1988 Oct;54(10):2478–2485. [PMC free article] [PubMed]
  • Guerin WF, Jones GE. Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol. 1988 Apr;54(4):937–944. [PMC free article] [PubMed]
  • Haigler BE, Gibson DT. Purification and properties of ferredoxinNAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol. 1990 Jan;172(1):465–468. [PMC free article] [PubMed]
  • Haigler BE, Gibson DT. Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Bacteriol. 1990 Jan;172(1):457–464. [PMC free article] [PubMed]
  • Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. [PubMed]
  • Herrick JB, Madsen EL, Batt CA, Ghiorse WC. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microbiol. 1993 Mar;59(3):687–694. [PMC free article] [PubMed]
  • Hohn B, Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. [PubMed]
  • Jeffrey AM, Yeh HJ, Jerina DM, Patel TR, Davey JF, Gibson DT. Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry. 1975 Feb 11;14(3):575–584. [PubMed]
  • Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V, Gibson DT. Dihydrodiols from anthracene and phenanthrene. J Am Chem Soc. 1976 Sep 15;98(19):5988–5996. [PubMed]
  • Kiyohara H, Nagao K, Yana K. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol. 1982 Feb;43(2):454–457. [PMC free article] [PubMed]
  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol. 1994 Apr;176(8):2439–2443. [PMC free article] [PubMed]
  • Kurkela S, Lehväslaiho H, Palva ET, Teeri TH. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene. 1988 Dec 20;73(2):355–362. [PubMed]
  • LENNOX ES. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. [PubMed]
  • Menn FM, Applegate BM, Sayler GS. NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol. 1993 Jun;59(6):1938–1942. [PMC free article] [PubMed]
  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol. 1992 Apr;58(4):1351–1359. [PMC free article] [PubMed]
  • Olsen RH, DeBusscher G, McCombie WR. Development of broad-host-range vectors and gene banks: self-cloning of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol. 1982 Apr;150(1):60–69. [PMC free article] [PubMed]
  • Patel TR, Gibson DT. Purification and propeties of (plus)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacteriol. 1974 Sep;119(3):879–888. [PMC free article] [PubMed]
  • Sanseverino J, Applegate BM, King JM, Sayler GS. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl Environ Microbiol. 1993 Jun;59(6):1931–1937. [PMC free article] [PubMed]
  • Sanseverino J, Werner C, Fleming J, Applegate B, King JM, Sayler GS. Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils. Biodegradation. 1993;4(4):303–321. [PubMed]
  • Serdar CM, Gibson DT. Isolation and characterization of altered plasmids in mutant strains of Pseudomonas putida NCIB 9816. Biochem Biophys Res Commun. 1989 Oct 31;164(2):764–771. [PubMed]
  • Serdar CM, Gibson DT. Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem Biophys Res Commun. 1989 Oct 31;164(2):772–779. [PubMed]
  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene. 1993 May 15;127(1):31–37. [PubMed]
  • Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. [PubMed]
  • Taira K, Hirose J, Hayashida S, Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992 Mar 5;267(7):4844–4853. [PubMed]
  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol. 1994 Apr;176(8):2444–2449. [PMC free article] [PubMed]
  • Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. [PubMed]
  • Weissenfels WD, Beyer M, Klein J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol. 1990 Jan;32(4):479–484. [PubMed]
  • Yang Y, Chen RF, Shiaris MP. Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J Bacteriol. 1994 Apr;176(8):2158–2164. [PMC free article] [PubMed]
  • Yen KM, Serdar CM. Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol. 1988;15(3):247–268. [PubMed]
  • Zylstra GJ, Gibson DT. Aromatic hydrocarbon degradation: a molecular approach. Genet Eng (N Y) 1991;13:183–203. [PubMed]
  • Zylstra GJ, Gibson DT. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed]
  • Zylstra GJ, Wang XP, Kim E, Didolkar VA. Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation. Ann N Y Acad Sci. 1994 May 2;721:386–398. [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)