Search tips
Search criteria 


Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. 1995 May; 61(5): 2040–2042.
PMCID: PMC167473

Role of C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase-S in glucan binding.


The C-terminal glucan-binding domain of the glucosyltransferase-S of Streptococcus mutans GS-5 contains five 65-amino-acid direct repeating units. A series of deletion derivatives of both the glucosyltransferase-S and its glucan-binding domain were constructed and analyzed. The results demonstrated that the four C-terminal direct repeating units constituted part of the minimum domain required for glucan binding.

Full Text

The Full Text of this article is available as a PDF (185K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abo H, Matsumura T, Kodama T, Ohta H, Fukui K, Kato K, Kagawa H. Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase). J Bacteriol. 1991 Feb;173(3):989–996. [PMC free article] [PubMed]
  • Ferretti JJ, Gilpin ML, Russell RR. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol. 1987 Sep;169(9):4271–4278. [PMC free article] [PubMed]
  • Giffard PM, Jacques NA. Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J Dent Res. 1994 Jun;73(6):1133–1141. [PubMed]
  • Gilmore KS, Russell RR, Ferretti JJ. Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun. 1990 Aug;58(8):2452–2458. [PMC free article] [PubMed]
  • Greenwood JM, Ong E, Gilkes NR, Warren RA, Miller RC, Jr, Kilburn DG. Cellulose-binding domains: potential for purification of complex proteins. Protein Eng. 1992 Jun;5(4):361–365. [PubMed]
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun. 1989 Jul;57(7):2079–2085. [PMC free article] [PubMed]
  • Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Honda O, Kato C, Kuramitsu HK. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol. 1990 Oct;136(10):2099–2105. [PubMed]
  • Kato C, Kuramitsu HK. Carboxyl-terminal deletion analysis of the Streptococcus mutans glucosyltransferase-I enzyme. FEMS Microbiol Lett. 1990 Nov;60(3):299–302. [PubMed]
  • Kato C, Nakano Y, Lis M, Kuramitsu HK. Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1184–1188. [PubMed]
  • Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. [PubMed]
  • Kuramitsu HK. Characterization of extracellular glucosyltransferase activity of Steptococcus mutans. Infect Immun. 1975 Oct;12(4):738–749. [PMC free article] [PubMed]
  • Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. [PMC free article] [PubMed]
  • Mooser G, Wong C. Isolation of a glucan-binding domain of glucosyltransferase (1,6-alpha-glucan synthase) from Streptococcus sobrinus. Infect Immun. 1988 Apr;56(4):880–884. [PMC free article] [PubMed]
  • Nakano YJ, Kuramitsu HK. Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis. J Bacteriol. 1992 Sep;174(17):5639–5646. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Shimamura A, Nakano YJ, Mukasa H, Kuramitsu HK. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product. J Bacteriol. 1994 Aug;176(16):4845–4850. [PMC free article] [PubMed]
  • von Eichel-Streiber C, Sauerborn M, Kuramitsu HK. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol. 1992 Oct;174(20):6707–6710. [PMC free article] [PubMed]
  • Wren BW. A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol. 1991 Apr;5(4):797–803. [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)