Search tips
Search criteria 


Logo of aacPermissionsJournals.ASM.orgJournalAAC ArticleJournal InfoAuthorsReviewers
Antimicrob Agents Chemother. 1995 March; 39(3): 629–637.
PMCID: PMC162596

Characterization of an LysR family protein, SmeR from Serratia marcescens S6, its effect on expression of the carbapenem-hydrolyzing beta-lactamase Sme-1, and comparison of this regulator with other beta-lactamase regulators.


Serratia marcescens S6 produces a chromosomally encoded carbapenem-hydrolyzing class A beta-lactamase, Sme-1 (T. Naas, L. Vandel, W. Sougakoff, D. M. Livermore, and P. Nordmann, Antimicrob. Agents Chemother. 38:1262-1270, 1994). Upstream from smeA we identified a second open reading frame (EMBL accession number Z30237). This encodes a 33.1-kDa protein, SmeR, which has a high degree of homology with NmcR, the LysR regulatory protein of the only other sequenced carbapenem-hydrolyzing class A beta-lactamase, NmcA from Enterobacter cloacae NOR-1. It is weakly related to AmpR of the chromosomal cephalosporinase regulatory systems described in E. cloacae, Yersinia enterocolitica, Citrobacter freundii, and Pseudomonas aeruginosa and is very weakly related to other LysR-type regulators of class A beta-lactamases. SmeR is a weakly positive regulator for Sme-1 expression in the absence of or in the presence of beta-lactam inducers. The -35 and -10 regions of smeR are in the opposite orientations and are face-to-face relative to the smeA promoter. SmeR acts similarly to NmcR and not as the AmpR regulators described for class C beta-lactamase systems. SmeR is a weak inducer in the absence or presence of beta-lactams. As was found for the AmpC-AmpR and NmcA-NmcR systems, a putative SmeR-binding site was present upstream from the beta-lactamase gene promoter regions. beta-Galactosidase activity from a smeR-lacZ translational fusion was expressed constitutively and decreased in the presence of SmeR from a coresident plasmid, suggesting that SmeR is autogeneously controlled. Finally, beta-lactams did not affect the expression of SmeR, which is the second regulator of a class A carbapenem-hydrolyzing beta-lactamase to be identified.

Full Text

The Full Text of this article is available as a PDF (451K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bartowsky E, Normark S. Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC beta-lactamase. Mol Microbiol. 1991 Jul;5(7):1715–1725. [PubMed]
  • Bartowsky E, Normark S. Interactions of wild-type and mutant AmpR of Citrobacter freundii with target DNA. Mol Microbiol. 1993 Nov;10(3):555–565. [PubMed]
  • Beck CF, Warren RA. Divergent promoters, a common form of gene organization. Microbiol Rev. 1988 Sep;52(3):318–326. [PMC free article] [PubMed]
  • Bennett PM, Chopra I. Molecular basis of beta-lactamase induction in bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):153–158. [PMC free article] [PubMed]
  • Brumbley SM, Carney BF, Denny TP. Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol. 1993 Sep;175(17):5477–5487. [PMC free article] [PubMed]
  • Campbell JI, Scahill S, Gibson T, Ambler RP. The phototrophic bacterium Rhodopseudomonas capsulata sp108 encodes an indigenous class A beta-lactamase. Biochem J. 1989 Jun 15;260(3):803–812. [PubMed]
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. [PMC free article] [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Feng DF, Doolittle RF. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 1990;183:375–387. [PubMed]
  • Geliebter J, Zeff RA, Melvold RW, Nathenson SG. Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: Kbm9 and Kbm6. Proc Natl Acad Sci U S A. 1986 May;83(10):3371–3375. [PubMed]
  • Goethals K, Van Montagu M, Holsters M. Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1646–1650. [PubMed]
  • Henikoff S, Haughn GW, Calvo JM, Wallace JC. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. [PubMed]
  • Honoré N, Nicolas MH, Cole ST. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 1986 Dec 20;5(13):3709–3714. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Lindberg F, Westman L, Normark S. Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4620–4624. [PubMed]
  • Lindquist S, Lindberg F, Normark S. Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene. J Bacteriol. 1989 Jul;171(7):3746–3753. [PMC free article] [PubMed]
  • Lodge JM, Minchin SD, Piddock LJ, Busby SJ. Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J. 1990 Dec 15;272(3):627–631. [PubMed]
  • Minton NP. Improved plasmid vectors for the isolation of translational lac gene fusions. Gene. 1984 Nov;31(1-3):269–273. [PubMed]
  • Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7693–7697. [PubMed]
  • Naas T, Vandel L, Sougakoff W, Livermore DM, Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A beta-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother. 1994 Jun;38(6):1262–1270. [PMC free article] [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother. 1993 May;37(5):939–946. [PMC free article] [PubMed]
  • Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother. 1994 Jan;38(1):104–114. [PMC free article] [PubMed]
  • Pridmore RD. New and versatile cloning vectors with kanamycin-resistance marker. Gene. 1987;56(2-3):309–312. [PubMed]
  • Raleigh EA, Kleckner N. Quantitation of insertion sequence IS10 transposase gene expression by a method generally applicable to any rarely expressed gene. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1787–1791. [PubMed]
  • Rosenberg M, Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Schell MA. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626. [PubMed]
  • Seoane A, Francia MV, García Lobo JM. Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica. Antimicrob Agents Chemother. 1992 May;36(5):1049–1052. [PMC free article] [PubMed]
  • Shine J, Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. [PubMed]
  • Stragier P, Richaud F, Borne F, Patte JC. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. J Mol Biol. 1983 Aug 5;168(2):307–320. [PubMed]
  • Urabe H, Ogawara H. Nucleotide sequence and transcriptional analysis of activator-regulator proteins for beta-lactamase in Streptomyces cacaoi. J Bacteriol. 1992 May;174(9):2834–2842. [PMC free article] [PubMed]
  • Wada K, Aota S, Tsuchiya R, Ishibashi F, Gojobori T, Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2367–2411. [PMC free article] [PubMed]
  • Yang YJ, Wu PJ, Livermore DM. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother. 1990 May;34(5):755–758. [PMC free article] [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)