Aminoguanidine - effects on endoneurial vasoactive nitric oxide and on motor nerve conduction velocity in control and streptozotocin-diabetic rats

M. Dewhurst, N. Omawari & D.R. Tomlinson

Department of Pharmacology, St. Bartholomew’s and the Royal London School of Medicine and Dentistry, Queen Mary & Westfield College, Mile End Road, London E1 4NS

Introduction

Diabetic neuropathy is a degenerative complication characterized by structural and functional abnormalities in peripheral nerves (for review see Thomas & Tomlinson, 1992). Recently, endoneurial hypoxia as a consequence of peripheral nerve ischaemia has been proposed as a contributory factor in the pathogenesis of diabetic neuropathy (for review see Tesfaye et al., 1994). In rats, the induction of experimental diabetes leads to reductions in sciatic nerve blood flow and endoneurial oxygen tensions (Tuck et al., 1984). Moreover, these changes parallel reductions in nerve conduction velocity (Stevens & Tomlinson, 1995), an early electrophysiological abnormality observed in experimental and human diabetes mellitus. Peripheral nerve blood flow has also been shown to be reduced in man (Tesfaye et al., 1994) and rats with genetic diabetes mellitus (Stevens et al., 1994a).

Although the causes of endoneurial ischaemia remain unresolved, it is plausible that a localized defective production or release of locally acting vasoactive substances may be responsible (Tesfaye et al., 1994; Poston & Taylor, 1995). In diabetic rats, increased free-radical activity has been shown to attenuate endothelium-dependent relaxation of isolated aortae (Pieper & Garrett, 1988; Hattori et al., 1991), a process which may also occur in the sciatic nerves of such animals (Low & Nickander, 1991). The release of other mediators such as the vasodilator prostacyclin has also been shown to be reduced in peripheral nerves from experimentally diabetic rats (Ward et al., 1989; Stevens et al., 1993). The defective release of such mediators may have important consequences in the regulation of peripheral nerve blood flow and thus diabetic neuropathy.

Recently we have demonstrated the susceptibility of peripheral nerve blood flow, as indexed by the real-time monitoring of sciatic nerve laser Doppler flux (LDF), to drugs administered via direct microinjection into the sciatic nerve endoneurium (Omawari et al., 1996). With this technique the nitric oxide synthase inhibitor N^nicotinyl-l-arginine methyl ester (l-NNAME) followed by l-arginine was shown to cause sciatic nerve LDF to be decreased and increased, respectively. Neither saline nor D-NAME, which does not inhibit nitric oxide production (Graves & Poston, 1993), affected sciatic nerve LDF. In streptozotocin (STZ)-diabetic rats the effects of l-NNAME were markedly attenuated, whereas the effects of l-arginine appeared to be less effective.

In conclusion, these data suggest that AG treatment may affect nitric oxide production in the vasa nervorum of peripheral nerves. However, the effects of AG-treatment are not consistent with the prevention of a diabetes-associated reduction in endoneurial nitric oxide production. The mechanisms by which AG attenuates nerve conduction slowing in streptozotocin-diabetic rats therefore remain unclear.

Keywords: Aminoguanidine; diabetic neuropathy; streptozotocin; diabetes mellitus; nitric oxide; nerve conduction; velocity; blood flow; laser Doppler; l-NNAME; l-arginine

1 The effects of aminoguanidine (AG) treatment on reductions in motor nerve conduction velocity (MNCV) and sciatic nerve blood flow, indexed by laser Doppler flux (LDF), were investigated in rats with experimental diabetes (streptozotocin-induced; 8–10 weeks duration). The contribution of endoneurial vasoactive nitric oxide to the LDF of these animals was also investigated by the direct micro-injection of N^nitro-l-arginine methyl ester (l-NNAME; 1 mmol in 1 ml), followed by l-arginine (100 mmol in 1 ml), into the nerve endoneurium.

2 The MNCV (m s^-1, mean ± s.d.) of diabetic rats (38.2±1.5) was lower (P<0.01) than that of age-matched controls (47.2±4.2). AG treatment (50 mg kg^-1 day^-1, i.p.) attenuated the diabetes-induced deficits in MNCV (43.4±5.9; P<0.01), but had no effect in controls (48.8±3.8) or, if administered via drinking water (1 g l^-1), diabetes (37.4±4.1).

3 l-NNAME markedly reduced the resting LDF (arbitrary units; mean ± s.e.mean) of controls (209±13 to 120±18; P<0.005), an effect reversed by subsequent l-arginine (to 206±27). In diabetic rats the LDF reduction following l-NNAME was much smaller (111±11 to 84±6; P<0.05), but the change with l-arginine was significantly increased (to 145±12; P<0.001).

4 AG treatment increased the resting LDF of control (265±34) and diabetic rats (133±14 for daily injection and 119±13 for drinking water). The responses to l-NNAME and l-arginine were not changed markedly by AG treatment. However, l-arginine appeared to be less effective.

5 In conclusion, these data suggest that AG treatment may affect nitric oxide production in the vasa nervorum of peripheral nerves. However, the effects of AG-treatment are not consistent with the prevention of a diabetes-associated reduction in endoneurial nitric oxide production. The mechanisms by which AG attenuates nerve conduction slowing in streptozotocin-diabetic rats therefore remain unclear.

1 Author for correspondence.
therefore in this study we investigated the effects of AG treatment in control and STZ-diabetic rats, examining effects upon sciatic nerve LDF and motor nerve conduction velocity (MNCV). The technique of sciatic nerve microinjection was also used to elucidate the possible effects of AG on the contribution of endoneurial nitric oxide production to sciatic nerve LDF.

Methods

Induction of diabetes and treatments

Male Wistar rats, weight 280–320 g (Charles River, U.K.), were randomly assigned to five groups – two age-matched groups and three diabetic groups. Control and diabetic groups remained untreated or received daily injections of AG (50 mg kg−1, i.p.). The third diabetic group was treated with AG, administered via drinking water (1 g l−1). Following an overnight fast, diabetes was induced by a single injection of streptozotocin (55 mg kg−1 body weight, i.p.), freshly dissolved in sterile saline (0.9% w/v). Thereafter all groups were allowed free access to standard laboratory chow (Rat & Mouse No. 1 maintenance diet, Special Diets Services, U.K.) and water, the second group being used as age-matched controls. Three days later diabetes was confirmed by reflectance photometry of tail vein blood glucose (Reflolux, Boehringer Mannheim, Germany), and all treatments begun and continued until the end of the protocol (8–10 weeks). Rats were accepted as diabetic if blood glucose concentrations exceeded 15 mm.

Measurement of cardiovascular variables and sciatic nerve laser Doppler flux

Anaesthesia was induced with halothane and cannulae inserted into the jugular vein, for the infusion of anaesthetic, and carotid artery for the monitoring of arterial blood pressures via a pressure transducer (Type 4-327 L221; Bell and Howell). An otid artery for the monitoring of arterial blood pressures via a catheter connected to a heated homeothermic mat. The left sciatic nerve was monitored with a microthermocouple connected to an electronic thermometer (Comark, U.K.), and was maintained at 37°C by an infra-red lamp. The sciatic nerve was stimulated with a single constant current (10 mA) square wave pulse (duration 100 μs), firstly as the sciatic notch and then at the Achilles tendon. Pulses were delivered via monopolar needle electrodes. Electromyograms were recorded by needle electrodes inserted into the interosseous muscle and skin of the foot, amplified 100 fold, digitised (Maclab/8, see above) and recorded with ‘Scope v3.4’ software running on a Macintosh IIsi personal computer. The temporal separations of the electromyograms were used to determine nerve conduction velocity as described previously (Karasu et al., 1995). At the end of all measurements blood was collected for plasma glucose measurement by a glucose oxidase assay kit, as defined previously (Karasu et al., 1995).

Statistical analysis

All data are presented as means±1 s.d. For clarity data in Figure 1 and Table 3 are presented as means±s.e.mean. Acute drug effects were evaluated by comparison within animal (effect versus baseline) by use of paired t tests. Single comparisons between groups used one-way analysis of variance with Duncan’s multiple range tests (P<0.01 and P<0.05) where F<0.05 and there was homogeneity of variance (Levene’s test P<0.05).

Drugs

All drugs were obtained from Sigma Chemical Company (U.K.) unless indicated otherwise in Methods section.

Results

Body weight and plasma glucose

Data showing final plasma glucose concentrations and changes in body weight for all groups are summarized in Table 1. Diabetic rats were hyperglycaemic and of lower body weight than age-matched controls. AG treatment significantly increased the final body weights of control and diabetic rats when administered via intra-peritoneal injection, but was without effect when administered via drinking water. AG treatment had no effect upon final plasma glucose concentrations.
Effects of aminoguanidine treatment on motor nerve conduction velocity

Diabetic animals had significantly reduced motor nerve conduction velocities compared with those of untreated age-matched controls (Table 1). AG treatment did not affect MNCV in control animals, but attenuated the diabetes-induced reduction in MNCV if administered by daily intraperitoneal injection. The nerve conduction velocity of diabetic rats treated with AG via drinking water was similar to that of untreated diabetic animals (Table 1).

Effects of aminoguanidine treatment on arterial pressure and sciatic nerve laser Doppler flux

Diabetic animals exhibited a minor degree of hypotension relative to non-diabetic control animals, which was significant for the untreated diabetic group (Table 2). On a few occasions, the microinjection of drugs into the sciatic nerve endoneurium caused a modest, transient (<2 min) change in mean arterial pressure (see Omawari et al., 1996 for traces). However, the changes in LDF elicited by L-NAME or L-arginine were not associated with changes in arterial pressures. Mean arterial pressures for the time periods over which LDF data were obtained are summarized in Table 2. Arterial pressures measured before and after the microinjection of drugs into the sciatic nerve endoneurium were not significantly different. Bradycardia, characteristic of experimentally diabetic rats, was also observed in diabetic groups and was also unaffected by endoneurial microinjections (Table 2).

The resting sciatic nerve LDF was significantly lower in diabetic rats (P<0.01) compared to that of untreated controls (Table 3). Treatment with AG increased resting sciatic nerve LDF in controls, though this effect was variable between animals and thus not significant. AG treatment had no significant effect on nerve LDF in diabetic rats, whether given by intraperitoneal injection or via drinking water.

Table 1 Body weight, plasma glucose and motor nerve conduction velocity data for experimental groups

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Body weight (g)</th>
<th>Plasma glucose (mm)</th>
<th>MNCV (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td>Control rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>8</td>
<td>307.8 ± 14.8</td>
<td>525.4 ± 43.7</td>
<td>67.6 ± 0.53</td>
</tr>
<tr>
<td>AG-treated (i.p.)</td>
<td>10</td>
<td>322.8 ± 9.7</td>
<td>572.6 ± 49.2</td>
<td>63.1 ± 1.00</td>
</tr>
<tr>
<td>Diabetic rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>9</td>
<td>318.6 ± 13.8</td>
<td>276.1 ± 30.7</td>
<td>35.2 ± 3.71</td>
</tr>
<tr>
<td>AG-treated (i.p.)</td>
<td>11</td>
<td>316.2 ± 13.5</td>
<td>313.5 ± 52.1</td>
<td>30.1 ± 3.75</td>
</tr>
<tr>
<td>AG-treated (d.w.)</td>
<td>9</td>
<td>311.3 ± 7.4</td>
<td>291.6 ± 48.4</td>
<td>32.45 ± 2.12</td>
</tr>
</tbody>
</table>

Data are mean ± 1 s.d. and were analysed by one-way ANOVA with Duncan’s multiple range tests. Superscripts denote significant differences between groups within columns at P<0.05 a vs b and d vs e and at P<0.01 a or b vs c d or e and c vs d. Abbreviations—AG, aminoguanidine; MNCV, motor nerve conduction velocity and d.w., drinking water.

Table 2 Effects of endoneurial microinjection on mean arterial pressures and resting heart rates of experimental groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Resting heart rate (beats min⁻¹)</th>
<th>Initial Mean arterial pressure (mmHg)</th>
<th>l-NAME</th>
<th>l-Arginine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>436 ± 33a</td>
<td>102 ± 3a</td>
<td>100 ± 7</td>
<td>106 ± 3</td>
</tr>
<tr>
<td>AG-treated (i.p.)</td>
<td>404 ± 20a</td>
<td>102 ± 5a</td>
<td>102 ± 7</td>
<td>109 ± 6</td>
</tr>
<tr>
<td>Diabetic rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>336 ± 21b</td>
<td>95 ± 3b</td>
<td>95 ± 5</td>
<td>96 ± 3</td>
</tr>
<tr>
<td>AG-treated (i.p.)</td>
<td>353 ± 24b</td>
<td>97 ± 6</td>
<td>99 ± 8</td>
<td>97 ± 6</td>
</tr>
<tr>
<td>AG-treated (d.w.)</td>
<td>349 ± 43c</td>
<td>99 ± 6</td>
<td>102 ± 13</td>
<td>102 ± 9</td>
</tr>
</tbody>
</table>

Data are mean ± 1 s.d. and were analysed by one-way ANOVA with Duncan’s multiple range tests. Superscripts denote significant differences between groups within columns at P<0.05 a vs b and at P<0.01 c vs d. Typical differences between initial arterial pressures shown only. Data for mean arterial pressures were obtained over time periods concomitant with those for LDF. Abbreviations—AG, aminoguanidine and d.w., drinking water.

Table 3 Effects of N6-nitro-l-arginine methyl ester (l-NAME) and l-arginine on sciatic nerve laser Doppler flux

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-l-NAME</th>
<th>Post-l-NAME</th>
<th>% fall</th>
<th>Pre-l-arginine</th>
<th>Post-l-arginine</th>
<th>% rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>209 ± 13</td>
<td>120 ± 18</td>
<td>43 ± 8</td>
<td>133 ± 26</td>
<td>206 ± 27</td>
<td>66 ± 28</td>
</tr>
<tr>
<td>AG-treated (i.p.)</td>
<td>265 ± 34</td>
<td>171 ± 18</td>
<td>28 ± 12</td>
<td>163 ± 19</td>
<td>196 ± 41</td>
<td>16 ± 13</td>
</tr>
<tr>
<td>Diabetic rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>111 ± 11a</td>
<td>84 ± 6</td>
<td>21 ± 7</td>
<td>83 ± 7</td>
<td>145 ± 12a</td>
<td>76 ± 11</td>
</tr>
<tr>
<td>AG-treated (i.p.)</td>
<td>133 ± 14</td>
<td>106 ± 15</td>
<td>17 ± 10</td>
<td>96 ± 13</td>
<td>127 ± 22</td>
<td>30 ± 8</td>
</tr>
<tr>
<td>AG-treated (d.w.)</td>
<td>119 ± 13</td>
<td>84 ± 8</td>
<td>25 ± 8</td>
<td>88 ± 16</td>
<td>123 ± 8</td>
<td>56 ± 17</td>
</tr>
</tbody>
</table>

Data are mean ± 1 S.E.M. and were analysed by paired t tests. Superscripts denote that the sciatic nerve laser Doppler flux following both microinjections was significantly different from initial resting values at P<0.012 a vs b. Significant changes following individual drug microinjections are indicated in Figure 1. Abbreviations—AG, aminoguanidine and d.w., drinking water.
control group to 95 ± 22% of its initial value (mean ± s.d.), and for the AG-treated control group to 79 ± 38% of its initial value. The sciatic nerve LDF of diabetic rats was also reduced by the microinjection of L-NAME, though in these animals the nitric oxide synthase inhibitors were administered to the endoneurial microinjections. Sciatic nerve blood flow has a limited capacity for autoregulation and acute changes in arterial pressures can affect nerve blood flow (Low & Tuck, 1984; Takeuchi & Low, 1987). The local microinjection of drugs directly into the sciatic nerve endoneurium avoids systemic influences of drugs upon nerve blood flow, such as the hypertensive effects of L-NAME.

In disagreement with a study by Kihara et al. (1991), AG treatment failed to have a significant effect on the nerve Doppler flux deficit of diabetic rats. In the study of Kihara et al. a similar 57% reduction in sciatic nerve blood flow was observed in rats with diabetes of 8 weeks duration, but this was completely prevented by treatment with AG (50 mg kg⁻¹ day⁻¹, i.p.). Although the reasons for this discrepancy are unclear, several methodological differences may be responsible. Firstly, Kihara and co-workers used hydrogen clearance curves to measure flow within the endoneurium, a method postulated to measure nutritive flow alone (Day et al., 1989). The LDF method used in our study serves only as an index of whole nerve blood flow and may not delineate effects

Discussion

This study has confirmed the development of a nerve Doppler flux deficit and motor nerve conduction slowing in STZ-diabetic rats, findings which have been well documented in rats with both chemical and genetic forms of diabetes (see Introduction). In addition this study confirmed our previous finding (Omawari et al., 1996) that L-NAME, microinjected directly into the sciatic nerve endoneurium, causes smaller reductions in the nerve LDF of diabetic rats than in age-matched controls. Similar reductions in nerve blood flow were also observed in a recent study by Kihara and Low (1995), though in their study the topical application of two different nitric oxide synthase (NOS) inhibitors was associated with a moderate increase in nerve blood flow before its reduction. The time required for the NOS inhibitors to reduce nerve blood flow was also approximately twice that observed in this study. These minor discrepancies are probably explainable by methodological differences. In the study by Kihara and Low (1995) the nitric oxide synthase inhibitors were administered to the sciatic nerve topically, via addition to a pool of physiological buffer contained within surrounding muscle layers. Thus, it is possible that in their study the initial increase in nerve blood flow was mediated by actions of the NOS inhibitors on vascular tissues other than the sciatic nerve endoneurium, principally local skeletal muscle, and the slower onset of effect due to the increased drug diffusion distances. Regardless of these differences, the NOS inhibitors reduced the nerve blood flow of control rats to a similar extent in both studies (L-NMMA reduced nerve blood flow by 38% in their study and L-NAME by 43% in this study). Another common finding of these studies was the reduced capacity of NOS inhibitors to decrease the sciatic nerve blood flow of diabetic rats. These studies not only indicate a powerful role for nitric oxide in the maintenance of sciatic nerve blood flow, but suggest that nitric oxide production in the resting nerve of diabetic rats is reduced (see Omawari et al., 1996).

In examining the effects of L-NAME on endoneurial nitric oxide production it is important to bear in mind that other factors, such as a reduction in the production of vasodilator prostanooids are also likely to contribute (Stevens et al., 1993; Omawari et al., 1996). This is indicated by the fact that neither L-arginine nor sodium nitroprusside are capable of completely restoring nerve LDF to levels observed in non-diabetic animals (this study and Omawari et al., 1996). Non-diabetic rats treated with low doses of cyclo-oxygenase and NOS inhibitors in combination have also been shown to develop nerve conduction velocity equivalent to those observed in diabetic rats of the same duration (Cameron et al., 1993). However, it is possible that the failure of sodium nitroprusside or L-arginine completely to restore nerve LDF reflects an acutely irreversible modification to the structure of the vasculature which limited vasodilatation. Micro-vascular abnormalities such as increased basement membrane thickening and endoneurial capillary density are clearly observed in the vasculature of experimentally diabetic rats (Yagihashi et al., 1979; Powell et al., 1980; Cameron et al., 1991).

AG treatment had no effect upon the systemic arterial pressure of control or STZ-diabetic rats, an observation found by others (Tilton et al., 1993). However, it is possible that with long-term AG treatment cardiovascular and baroregulatory reflexes compensate for a minor effect on peripheral vascular tone, such that the measurements made here would not detect it. In fact, studies suggest that similar doses of AG to those used in this study can produce minor elevations in systemic arterial pressure (Gardiner et al., 1996). Nonetheless, AG is known to be a relatively selective inhibitor of the cytokine-inducible isoform of NOS (Laszlo et al., 1995; Wu et al., 1995) and these data suggest, therefore, that constitutive endothelial NOS is the key enzyme responsible for vasoactive nitric oxide production in the peripheral vasculature of diabetic rats. It is also important to note that arterial pressures concomitant to the recording of nerve LDF were not different before and after the endoneurial microinjections. Sciatic nerve blood flow has a limited capacity for autoregulation and acute changes in arterial pressures can affect nerve blood flow (Low & Tuck, 1984; Takeuchi & Low, 1987). The local microinjection of drugs directly into the sciatic nerve endoneurium avoids systemic influences of drugs upon nerve blood flow, such as the hypertensive effects of L-NAME.

Figure 1 Effects of N⁵-nitro-L-arginine methyl ester (L-NAME; 1 nmol in 1 μl) and l-arginine (100 nmol in 1 μl) on sciatic nerve laser Doppler flux of control (○) and STZ-diabetic rats (□). Rats remained untreated (■), or received aminoguanidine, either by intraperitoneal injection (50 mg kg⁻¹, ■, ■), or in drinking water (1 g l⁻¹, ○, ○) for diabetic only. Data are mean with vertical lines showing s.e.mean, and were analysed by paired t tests. Significant differences after microinjection of L-NAME or l-arginine are as indicated at P < 0.05 (a), P < 0.005 (b) and P < 0.001 (c). Unmarked lines indicate not significant.
of AG upon epineurial and endoneurial vessels within the sciatic nerve (Stevens et al., 1994a). However, sciatic nerve LDF measurements have been positively correlated to direct measurements of nerve blood flow, by use of the radiotracer iodine-125-antipyridine and hydrogen polarography (Rundquist et al., 1985; Takeuchi & Low, 1987; Stevens et al., 1994b). Clearly this matter can only be resolved by a study in which both hydrogen polarography and LDF are employed to assess the effects of AG on nerve blood flow.

It is interesting that the ability of L-arginine to reverse the effects of L-NAME was diminished in control and diabetic rats treated with AG. At present there does not appear to be an explanation for this effect in the literature, though it is possible that AG treatment reduces the intracellular availability of L-arginine for conversion into nitric oxide, or affects its uptake into the nitric oxide producing cells of the vasa nervorum. Clearly further studies are required to investigate the effects of AG on the bioavailability and intracellular metabolism of L-arginine before definitive conclusions can be drawn regarding how this effect is mediated.

The capacity of AG treatment to prevent reductions in the MNCV of diabetic rats has been demonstrated previously, through there are some discrepancies (Kihara et al., 1991; Yagihashi et al., 1992). In this study AG was ineffective when administered via drinking water, whereas Cameron et al. (1992) showed that this route prevented diabetes-related reductions in both motor and sensory nerve conduction velocities. Although there are no obvious methodological differences to account for this discrepancy, we believe that differences in the bioavailability of AG may be responsible. This is supported here by the parallel effects of AG on body weight and MNCV in diabetic rats. Thus, intraperitoneal AG increased the body weights of diabetic rats, whereas in drinking water AG had no effect. This effect of AG has been observed previously in non-diabetic rats (Baylin et al., 1975). Furthermore, treating diabetic rats with doses of AG (25 mg kg$^{-1}$, i.p.) lower than those used in this study does not produce a significant attenuation of motor nerve conduction slowing at the duration of diabetes used in this study (Yagihashi et al., 1992).

Whilst several different hypotheses have been proposed to explain how AG impedes the development of experimental diabetic neuropathy, the precise mechanisms remain unclear. AG has been suggested to inhibit the enzyme aldose reductase (Kumari et al., 1991), but it does not prevent the accumulation of polyol pathway metabolites in peripheral nerves (Cameron et al., 1992; Tilton et al., 1993). AG also inhibits the formation of advanced glycosylation end products (AGEs), which occurs via the non-enzymatic glycosylation of proteins during hyperglycaemia (Brownlee et al., 1986). In doing so AG may increase the elasticity of blood vessels (Huijberts et al., 1993; Hill & Edge, 1994) and possibly prevent an angiopathy of the vasa nervorum. AGEs have also been suggested to interact directly with nitric oxide and result in its deactivation (Bucala et al., 1991). In a study by Yagihashi et al. (1992) structural and functional abnormalities were attenuated in the peripheral nerves of diabetic rats treated with AG, but this was associated with only a partial reduction in the accumulation of AGEs. Thus, a direct correlation between nerve levels of AGEs and effects on nerve blood flow or conduction velocity has yet to be demonstrated.

In summary, AG attenuated the development of motor nerve conduction slowing in STZ-diabetic rats when administered via intraperitoneal injection. This was despite only a minor attenuation of the diabetes-induced deficit in sciatic nerve MNCV. The reductions in LDF elicited by the microinjection of L-NAME into the sciatic nerves of control or diabetic rats were also unaffected by AG treatment. However, the subsequent increases in LDF elicited by L-arginine were consistently attenuated by AG treatment. These data suggest, therefore, that the mechanisms by which AG treatment attenuates motor nerve conduction slowing are unlikely to be mediated by the prevention of deficient endoneurial vasoactive nitric oxide production and peripheral nerve ischaemia.

This study was supported by a grant from the William Harvey Research Institute made possible by a donation from the Ono Pharmaceutical Company, Japan.

References

(Received July 1, 1996
Revised October 17, 1996
Accepted November 1, 1996)