PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1999 August 1; 27(15): 2991–3000.
PMCID: PMC148522

A tale of three fingers: the family of mammalian Sp/XKLF transcription factors.

Abstract

One of the most common regulatory elements is the GC box and the related GT/CACC box, which are widely distributed in promoters, enhancers and locus control regions of housekeeping as well as tissue-specific genes. For long it was generally thought that Sp1 is the major factor acting through these motifs. Recent discoveries have shown that Sp1 is only one of many transcription factors binding and acting through these elements. Sp1 simply represents the first identified and cloned protein of a family of transcription factors characterised by a highly conserved DNA-binding domain consisting of three zinc fingers. Currently this new family of transcription factors has at least 16 different mammalian members. Here, we will summarise and discuss recent advances that have been directed towards understanding the biological role of these proteins.

Full Text

The Full Text of this article is available as a PDF (855K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. [PubMed]
  • Macleod D, Charlton J, Mullins J, Bird AP. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. [PubMed]
  • Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. [PubMed]
  • Kadonaga JT, Carner KR, Masiarz FR, Tjian R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987 Dec 24;51(6):1079–1090. [PubMed]
  • Hagen G, Müller S, Beato M, Suske G. Cloning by recognition site screening of two novel GT box binding proteins: a family of Sp1 related genes. Nucleic Acids Res. 1992 Nov 11;20(21):5519–5525. [PMC free article] [PubMed]
  • Sogawa K, Kikuchi Y, Imataka H, Fujii-Kuriyama Y. Comparison of DNA-binding properties between BTEB and Sp1. J Biochem. 1993 Oct;114(4):605–609. [PubMed]
  • Cook T, Gebelein B, Mesa K, Mladek A, Urrutia R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem. 1998 Oct 2;273(40):25929–25936. [PubMed]
  • Kingsley C, Winoto A. Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression. Mol Cell Biol. 1992 Oct;12(10):4251–4261. [PMC free article] [PubMed]
  • Crossley M, Whitelaw E, Perkins A, Williams G, Fujiwara Y, Orkin SH. Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol. 1996 Apr;16(4):1695–1705. [PMC free article] [PubMed]
  • Matsumoto N, Laub F, Aldabe R, Zhang W, Ramirez F, Yoshida T, Terada M. Cloning the cDNA for a new human zinc finger protein defines a group of closely related Krüppel-like transcription factors. J Biol Chem. 1998 Oct 23;273(43):28229–28237. [PubMed]
  • Feng WC, Southwood CM, Bieker JJ. Analyses of beta-thalassemia mutant DNA interactions with erythroid Krüppel-like factor (EKLF), an erythroid cell-specific transcription factor. J Biol Chem. 1994 Jan 14;269(2):1493–1500. [PubMed]
  • Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993 May;13(5):2776–2786. [PMC free article] [PubMed]
  • Matera AG, Ward DC. Localization of the human Sp1 transcription factor gene to 12q13 by fluorescence in situ hybridization. Genomics. 1993 Sep;17(3):793–794. [PubMed]
  • Scohy S, Van Vooren P, Szpirer C, Szpirer J. Assignment1 of Sp genes to rat chromosome bands 7q36 (Sp1), 10q31-->q32.1 (Sp2), 3q24-->q31 (Sp3) and 6q33 (Sp4) and of the SP2 gene to human chromosome bands 17q21.3-->q22 by in situ hybridization. Cytogenet Cell Genet. 1998;81(3-4):273–274. [PubMed]
  • Kalff-Suske M, Kunz J, Grzeschik KH, Suske G. Human Sp3 transcriptional regulator gene (SP3) maps to chromosome 2q31. Genomics. 1996 Nov 1;37(3):410–412. [PubMed]
  • Kalff-Suske M, Kunz J, Grzeschik KH, Suske G. Human Sp4 transcription factor gene (SP4) maps to chromosome 7p15. Genomics. 1995 Apr 10;26(3):631–633. [PubMed]
  • Imataka H, Sogawa K, Yasumoto K, Kikuchi Y, Sasano K, Kobayashi A, Hayami M, Fujii-Kuriyama Y. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J. 1992 Oct;11(10):3663–3671. [PubMed]
  • Imhof A, Schuierer M, Werner O, Moser M, Roth C, Bauer R, Buettner R. Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor. Mol Cell Biol. 1999 Jan;19(1):194–204. [PMC free article] [PubMed]
  • Ohe N, Yamasaki Y, Sogawa K, Inazawa J, Ariyama T, Oshimura M, Fujii-Kuriyama Y. Chromosomal localization and cDNA sequence of human BTEB, a GC box binding protein. Somat Cell Mol Genet. 1993 Sep;19(5):499–503. [PubMed]
  • Subramaniam M, Harris SA, Oursler MJ, Rasmussen K, Riggs BL, Spelsberg TC. Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res. 1995 Dec 11;23(23):4907–4912. [PMC free article] [PubMed]
  • Blok LJ, Kumar MV, Tindall DJ. Isolation of cDNAs that are differentially expressed between androgen-dependent and androgen-independent prostate carcinoma cells using differential display PCR. Prostate. 1995 Apr;26(4):213–224. [PubMed]
  • Fautsch MP, Vrabel A, Subramaniam M, Hefferen TE, Spelsberg TC, Wieben ED. TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters. Genomics. 1998 Aug 1;51(3):408–416. [PubMed]
  • Yajima S, Lammers CH, Lee SH, Hara Y, Mizuno K, Mouradian MM. Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). J Neurosci. 1997 Nov 15;17(22):8657–8666. [PubMed]
  • Blok LJ, Grossmann ME, Perry JE, Tindall DJ. Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol. 1995 Nov;9(11):1610–1620. [PubMed]
  • Tau KR, Hefferan TE, Waters KM, Robinson JA, Subramaniam M, Riggs BL, Spelsberg TC. Estrogen regulation of a transforming growth factor-beta inducible early gene that inhibits deoxyribonucleic acid synthesis in human osteoblasts. Endocrinology. 1998 Mar;139(3):1346–1353. [PubMed]
  • Southwood CM, Downs KM, Bieker JJ. Erythroid Krüppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn. 1996 Jul;206(3):248–259. [PubMed]
  • Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem. 1996 Aug 16;271(33):20009–20017. [PMC free article] [PubMed]
  • Yet SF, McA'Nulty MM, Folta SC, Yen HW, Yoshizumi M, Hsieh CM, Layne MD, Chin MT, Wang H, Perrella MA, et al. Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem. 1998 Jan 9;273(2):1026–1031. [PubMed]
  • Conkright MD, Wani MA, Anderson KP, Lingrel JB. A gene encoding an intestinal-enriched member of the Krüppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res. 1999 Mar 1;27(5):1263–1270. [PMC free article] [PubMed]
  • Anderson KP, Kern CB, Crable SC, Lingrel JB. Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Krüppel-like factor: identification of a new multigene family. Mol Cell Biol. 1995 Nov;15(11):5957–5965. [PMC free article] [PubMed]
  • Asano H, Li XS, Stamatoyannopoulos G. FKLF, a novel Krüppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol. 1999 May;19(5):3571–3579. [PMC free article] [PubMed]
  • Xiao JH, Davidson I, Macchi M, Rosales R, Vigneron M, Staub A, Chambon P. In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. Genes Dev. 1987 Oct;1(8):794–807. [PubMed]
  • Sogawa K, Imataka H, Yamasaki Y, Kusume H, Abe H, Fujii-Kuriyama Y. cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res. 1993 Apr 11;21(7):1527–1532. [PMC free article] [PubMed]
  • Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, Jensen S, Friedman SL. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9500–9505. [PubMed]
  • Koritschoner NP, Bocco JL, Panzetta-Dutari GM, Dumur CI, Flury A, Patrito LC. A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem. 1997 Apr 4;272(14):9573–9580. [PubMed]
  • Suzuki T, Yamamoto T, Kurabayashi M, Nagai R, Yazaki Y, Horikoshi M. Isolation and initial characterization of GBF, a novel DNA-binding zinc finger protein that binds to the GC-rich binding sites of the HIV-1 promoter. J Biochem. 1998 Aug;124(2):389–395. [PubMed]
  • Hagen G, Müller S, Beato M, Suske G. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 1994 Aug 15;13(16):3843–3851. [PubMed]
  • Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J. 1998 Sep 1;17(17):5129–5140. [PubMed]
  • Udvadia AJ, Templeton DJ, Horowitz JM. Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3953–3957. [PubMed]
  • Dennig J, Beato M, Suske G. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J. 1996 Oct 15;15(20):5659–5667. [PubMed]
  • Sjøttem E, Anderssen S, Johansen T. The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3' to the TATA box. J Virol. 1996 Jan;70(1):188–198. [PMC free article] [PubMed]
  • Murata Y, Kim HG, Rogers KT, Udvadia AJ, Horowitz JM. Negative regulation of Sp1 trans-activation is correlated with the binding of cellular proteins to the amino terminus of the Sp1 trans-activation domain. J Biol Chem. 1994 Aug 12;269(32):20674–20681. [PubMed]
  • Chen X, Bieker JJ. Erythroid Krüppel-like factor (EKLF) contains a multifunctional transcriptional activation domain important for inter- and intramolecular interactions. EMBO J. 1996 Nov 1;15(21):5888–5896. [PubMed]
  • Kennett SB, Udvadia AJ, Horowitz JM. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res. 1997 Aug 1;25(15):3110–3117. [PMC free article] [PubMed]
  • Birnbaum MJ, van Wijnen AJ, Odgren PR, Last TJ, Suske G, Stein GS, Stein JL. Sp1 trans-activation of cell cycle regulated promoters is selectively repressed by Sp3. Biochemistry. 1995 Dec 19;34(50):16503–16508. [PubMed]
  • Datta PK, Raychaudhuri P, Bagchi S. Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription. Mol Cell Biol. 1995 Oct;15(10):5444–5452. [PMC free article] [PubMed]
  • Ellis J, Tan-Un KC, Harper A, Michalovich D, Yannoutsos N, Philipsen S, Grosveld F. A dominant chromatin-opening activity in 5' hypersensitive site 3 of the human beta-globin locus control region. EMBO J. 1996 Feb 1;15(3):562–568. [PubMed]
  • Karlseder J, Rotheneder H, Wintersberger E. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol. 1996 Apr;16(4):1659–1667. [PMC free article] [PubMed]
  • Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol. 1996 Apr;16(4):1668–1675. [PMC free article] [PubMed]
  • Philipsen S, Pruzina S, Grosveld F. The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. EMBO J. 1993 Mar;12(3):1077–1085. [PubMed]
  • Marin M, Karis A, Visser P, Grosveld F, Philipsen S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell. 1997 May 16;89(4):619–628. [PubMed]
  • Tate P, Skarnes W, Bird A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat Genet. 1996 Feb;12(2):205–208. [PubMed]
  • Supp DM, Witte DP, Branford WW, Smith EP, Potter SS. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev Biol. 1996 Jun 15;176(2):284–299. [PubMed]
  • Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995 May 25;375(6529):316–318. [PubMed]
  • Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995 May 25;375(6529):318–322. [PubMed]
  • Strouboulis J, Dillon N, Grosveld F. Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev. 1992 Oct;6(10):1857–1864. [PubMed]
  • Wijgerde M, Gribnau J, Trimborn T, Nuez B, Philipsen S, Grosveld F, Fraser P. The role of EKLF in human beta-globin gene competition. Genes Dev. 1996 Nov 15;10(22):2894–2902. [PubMed]
  • Spadaccini A, Tilbrook PA, Sarna MK, Crossley M, Bieker JJ, Klinken SP. Transcription factor erythroid Krüppel-like factor (EKLF) is essential for the erythropoietin-induced hemoglobin production but not for proliferation, viability, or morphological maturation. J Biol Chem. 1998 Sep 11;273(37):23793–23798. [PubMed]
  • Lim SK, Bieker JJ, Lin CS, Costantini F. A shortened life span of EKLF-/- adult erythrocytes, due to a deficiency of beta-globin chains, is ameliorated by human gamma-globin chains. Blood. 1997 Aug 1;90(3):1291–1299. [PubMed]
  • Perkins AC, Gaensler KM, Orkin SH. Silencing of human fetal globin expression is impaired in the absence of the adult beta-globin gene activator protein EKLF. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12267–12271. [PubMed]
  • Wani MA, Means RT, Jr, Lingrel JB. Loss of LKLF function results in embryonic lethality in mice. Transgenic Res. 1998 Jul;7(4):229–238. [PubMed]
  • Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 1997 Nov 15;11(22):2996–3006. [PubMed]
  • Kuo CT, Veselits ML, Leiden JM. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science. 1997 Sep 26;277(5334):1986–1990. [PubMed]
  • Schier AF, Gehring WJ. Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene. Nature. 1992 Apr 30;356(6372):804–807. [PubMed]
  • Gillemans N, Tewari R, Lindeboom F, Rottier R, de Wit T, Wijgerde M, Grosveld F, Philipsen S. Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta-globin locus control region in vivo. Genes Dev. 1998 Sep 15;12(18):2863–2873. [PubMed]
  • Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 1996 Oct 15;4(10):1171–1180. [PubMed]
  • Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. [PubMed]
  • Thiesen HJ, Bach C. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res. 1990 Jun 11;18(11):3203–3209. [PMC free article] [PubMed]
  • Shields JM, Yang VW. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic Acids Res. 1998 Feb 1;26(3):796–802. [PMC free article] [PubMed]
  • Imataka H, Nakayama K, Yasumoto K, Mizuno A, Fujii-Kuriyama Y, Hayami M. Cell-specific translational control of transcription factor BTEB expression. The role of an upstream AUG in the 5'-untranslated region. J Biol Chem. 1994 Aug 12;269(32):20668–20673. [PubMed]
  • Apt D, Watts RM, Suske G, Bernard HU. High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology. 1996 Oct 1;224(1):281–291. [PubMed]
  • Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, Spelsberg TC, Urrutia R. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997 May 15;99(10):2365–2374. [PMC free article] [PubMed]
  • Subramaniam M, Hefferan TE, Tau K, Peus D, Pittelkow M, Jalal S, Riggs BL, Roche P, Spelsberg TC. Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem. 1998 Feb 1;68(2):226–236. [PubMed]
  • Bieker JJ, Southwood CM. The erythroid Krüppel-like factor transactivation domain is a critical component for cell-specific inducibility of a beta-globin promoter. Mol Cell Biol. 1995 Feb;15(2):852–860. [PMC free article] [PubMed]
  • Armstrong JA, Bieker JJ, Emerson BM. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell. 1998 Oct 2;95(1):93–104. [PubMed]
  • Ryu S, Zhou S, Ladurner AG, Tjian R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature. 1999 Feb 4;397(6718):446–450. [PubMed]
  • Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell. 1990 Oct 5;63(1):155–165. [PubMed]
  • Jackson SP, Tjian R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 1988 Oct 7;55(1):125–133. [PubMed]
  • Ouyang L, Chen X, Bieker JJ. Regulation of erythroid Krüppel-like factor (EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site within its interaction domain. J Biol Chem. 1998 Sep 4;273(36):23019–23025. [PubMed]
  • Zhang W, Bieker JJ. Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9855–9860. [PubMed]
  • Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet. 1996 Oct;14(2):203–205. [PubMed]
  • Koivisto UM, Palvimo JJ, Jänne OA, Kontula K. A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10526–10530. [PubMed]
  • Sun XM, Neuwirth C, Wade DP, Knight BL, Soutar AK. A mutation (T-45C) in the promoter region of the low-density-lipoprotein (LDL)-receptor gene is associated with a mild clinical phenotype in a patient with heterozygous familial hypercholesterolaemia (FH). Hum Mol Genet. 1995 Nov;4(11):2125–2129. [PubMed]
  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10887–10890. [PubMed]
  • Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427–1429. [PubMed]
  • Logie C, Stewart AF. Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5940–5944. [PubMed]
  • Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J, Jr, Boguski MS, et al. The transcriptional program in the response of human fibroblasts to serum. Science. 1999 Jan 1;283(5398):83–87. [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Courey AJ, Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. [PubMed]
  • Dynan WS, Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell. 1983 Nov;35(1):79–87. [PubMed]
  • Saffer JD, Jackson SP, Annarella MB. Developmental expression of Sp1 in the mouse. Mol Cell Biol. 1991 Apr;11(4):2189–2199. [PMC free article] [PubMed]
  • Hagen G, Dennig J, Preiss A, Beato M, Suske G. Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3. J Biol Chem. 1995 Oct 20;270(42):24989–24994. [PubMed]
  • Kwon HS, Kim MS, Edenberg HJ, Hur MW. Sp3 and Sp4 can repress transcription by competing with Sp1 for the core cis-elements on the human ADH5/FDH minimal promoter. J Biol Chem. 1999 Jan 1;274(1):20–28. [PubMed]
  • Denver RJ, Pavgi S, Shi YB. Thyroid hormone-dependent gene expression program for Xenopus neural development. J Biol Chem. 1997 Mar 28;272(13):8179–8188. [PubMed]
  • Kobayashi A, Sogawa K, Imataka H, Fujii-Kuriyama Y. Analysis of functional domains of a GC box-binding protein, BTEB. J Biochem. 1995 Jan;117(1):91–95. [PubMed]
  • Wang Y, Michel FJ, Wing A, Simmen FA, Simmen RC. Cell-type expression, immunolocalization, and deoxyribonucleic acid-binding activity of basic transcription element binding transcription factor, an Sp-related family member, in porcine endometrium of pregnancy. Biol Reprod. 1997 Oct;57(4):707–714. [PubMed]
  • Döhr O, Abel J. Transforming growth factor-beta1 coregulates mRNA expression of aryl hydrocarbon receptor and cell-cycle-regulating genes in human cancer cell lines. Biochem Biophys Res Commun. 1997 Dec 8;241(1):86–91. [PubMed]
  • Fautsch MP, Vrabel A, Rickard D, Subramaniam M, Spelsberg TC, Wieben ED. Characterization of the mouse TGFbeta-inducible early gene (TIEG): conservation of exon and transcriptional regulatory sequences with evidence of additional transcripts. Mamm Genome. 1998 Oct;9(10):838–842. [PubMed]
  • Hevroni D, Rattner A, Bundman M, Lederfein D, Gabarah A, Mangelus M, Silverman MA, Kedar H, Naor C, Kornuc M, et al. Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J Mol Neurosci. 1998 Apr;10(2):75–98. [PubMed]
  • Hofbauer LC, Hicok KC, Khosla S. Effects of gonadal and adrenal androgens in a novel androgen-responsive human osteoblastic cell line. J Cell Biochem. 1998 Oct 1;71(1):96–108. [PubMed]
  • Bieker JJ. Isolation, genomic structure, and expression of human erythroid Krüppel-like factor (EKLF). DNA Cell Biol. 1996 May;15(5):347–352. [PubMed]
  • Jenkins NA, Gilbert DJ, Copeland NG, Gruzglin E, Bieker JJ. Erythroid Krüppel-like transcription factor (Eklf) maps to a region of mouse chromosome 8 syntenic with human chromosome 19. Mamm Genome. 1998 Feb;9(2):174–176. [PubMed]
  • Onyango P, Koritschoner NP, Patrito LC, Zenke M, Weith A. Assignment of the gene encoding the core promoter element binding protein (COPEB) to human chromosome 10p15 by somatic hybrid analysis and fluorescence in situ hybridization. Genomics. 1998 Feb 15;48(1):143–144. [PubMed]
  • van Ree JH, Roskrow MA, Becher AM, McNall R, Valentine VA, Jane SM, Cunningham JM. The human erythroid-specific transcription factor EKLF localizes to chromosome 19p13.12-p13.13. Genomics. 1997 Feb 1;39(3):393–395. [PubMed]
  • Jenkins TD, Opitz OG, Okano J, Rustgi AK. Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Krüppel-like factor. J Biol Chem. 1998 Apr 24;273(17):10747–10754. [PubMed]
  • Shields JM, Yang VW. Two potent nuclear localization signals in the gut-enriched Krüppel-like factor define a subfamily of closely related Krüppel proteins. J Biol Chem. 1997 Jul 18;272(29):18504–18507. [PMC free article] [PubMed]
  • Ton-That H, Kaestner KH, Shields JM, Mahatanankoon CS, Yang VW. Expression of the gut-enriched Krüppel-like factor gene during development and intestinal tumorigenesis. FEBS Lett. 1997 Dec 15;419(2-3):239–243. [PMC free article] [PubMed]
  • Zhang W, Shields JM, Sogawa K, Fujii-Kuriyama Y, Yang VW. The gut-enriched Krüppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J Biol Chem. 1998 Jul 10;273(28):17917–17925. [PMC free article] [PubMed]
  • Anderson KP, Crable SC, Lingrel JB. Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem. 1998 Jun 5;273(23):14347–14354. [PubMed]
  • Kozyrev SV, Hansen LL, Poltaraus AB, Domninsky DA, Kisselev LL. Structure of the human CpG-island-containing lung Kruppel-like factor (LKLF) gene and its location in chromosome 19p13.11-13 locus. FEBS Lett. 1999 Apr 1;448(1):149–152. [PubMed]
  • Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL. Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 1998 Dec 11;273(50):33750–33758. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press