Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1998 January 15; 26(2): 623–630.
PMCID: PMC147301

Green fluorescent protein as a scaffold for intracellular presentation of peptides.


Peptide aptamers provide probes for biological processes and adjuncts for development of novel pharmaceutical molecules. Such aptamers are analogous to compounds derived from combinatorial chemical libraries which have specific binding or inhibitory activities. Much as it is generally difficult to determine the composition of combinatorial chemical libraries in a quantitative manner, determining the quality and characteristics of peptide libraries displayed in vivo is problematical. To help address these issues we have adapted green fluorescent protein (GFP) as a scaffold for display of conformationally constrained peptides. The GFP-peptide libraries permit analysis of library diversity and expression levels in cells and allow enrichment of the libraries for sequences with predetermined characteristics, such as high expression of correctly folded protein, by selection for high fluorescence.

Full Text

The Full Text of this article is available as a PDF (257K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6378–6382. [PubMed]
  • Cortese R, Monaci P, Nicosia A, Luzzago A, Felici F, Galfré G, Pessi A, Tramontano A, Sollazzo M. Identification of biologically active peptides using random libraries displayed on phage. Curr Opin Biotechnol. 1995 Feb;6(1):73–80. [PubMed]
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. [PubMed]
  • Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. [PubMed]
  • Boyartchuk VL, Ashby MN, Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science. 1997 Mar 21;275(5307):1796–1800. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM. The genetic data environment an expandable GUI for multiple sequence analysis. Comput Appl Biosci. 1994 Dec;10(6):671–675. [PubMed]
  • Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392–1395. [PubMed]
  • Dopf J, Horiagon TM. Deletion mapping of the Aequorea victoria green fluorescent protein. Gene. 1996;173(1 Spec No):39–44. [PubMed]
  • Heim R, Cubitt AB, Tsien RY. Improved green fluorescence. Nature. 1995 Feb 23;373(6516):663–664. [PubMed]
  • Edwards MS, Sternberg JE, Thornton JM. Structural and sequence patterns in the loops of beta alpha beta units. Protein Eng. 1987 Jun;1(3):173–181. [PubMed]
  • LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. [PubMed]
  • Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature. 1996 Apr 11;380(6574):548–550. [PubMed]
  • Ladner RC. Constrained peptides as binding entities. Trends Biotechnol. 1995 Oct;13(10):426–430. [PubMed]
  • Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501–12504. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press