Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1997 December 1; 25(23): 4778–4785.
PMCID: PMC147120

The yeast SEN1 gene is required for the processing of diverse RNA classes.


A single base change in the helicase superfamily 1 domain of the yeast Saccharomyces cerevisiae SEN1 gene results in a heat-sensitive mutation that alters the cellular abundance of many RNA species. We compared the relative amounts of RNAs between cells that are wild-type and mutant after temperature-shift. In the mutant several RNAs were found to either decrease or increase in abundance. The affected RNAs include tRNAs, rRNAs and small nuclear and nucleolar RNAs. Many of the affected RNAs have been positively identified and include end-matured precursor tRNAs and the small nuclear and nucleolar RNAs U5 and snR40 and snR45. Several small nucleolar RNAs co-immunoprecipitate with Sen1 but differentially associate with the wild-type and mutant protein. Its inactivation also impairs precursor rRNA maturation, resulting in increased accumulation of 35S and 6S precursor rRNAs and reduced levels of 20S, 23S and 27S rRNA processing intermediates. Thus, Sen1 is required for the biosynthesis of various functionally distinct classes of nuclear RNAs. We propose that Sen1 is an RNA helicase acting on a wide range of RNA classes. Its effects on the targeted RNAs in turn enable ribonuclease activity.

Full Text

The Full Text of this article is available as a PDF (170K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Winey M, Culbertson MR. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics. 1988 Apr;118(4):609–617. [PubMed]
  • DeMarini DJ, Winey M, Ursic D, Webb F, Culbertson MR. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol Cell Biol. 1992 May;12(5):2154–2164. [PMC free article] [PubMed]
  • Ursic D, DeMarini DJ, Culbertson MR. Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins. Mol Gen Genet. 1995 Dec 20;249(6):571–584. [PubMed]
  • Koonin EV. A new group of putative RNA helicases. Trends Biochem Sci. 1992 Dec;17(12):495–497. [PubMed]
  • Budd ME, Campbell JL. A yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7642–7646. [PubMed]
  • Leeds P, Wood JM, Lee BS, Culbertson MR. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol. 1992 May;12(5):2165–2177. [PMC free article] [PubMed]
  • Leeds P, Peltz SW, Jacobson A, Culbertson MR. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 1991 Dec;5(12A):2303–2314. [PubMed]
  • Czaplinski K, Weng Y, Hagan KW, Peltz SW. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA. 1995 Aug;1(6):610–623. [PubMed]
  • Phizicky EM, Consaul SA, Nehrke KW, Abelson J. Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediates. J Biol Chem. 1992 Mar 5;267(7):4577–4582. [PubMed]
  • Clark MW, Yip ML, Campbell J, Abelson J. SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs. J Cell Biol. 1990 Nov;111(5 Pt 1):1741–1751. [PMC free article] [PubMed]
  • Tollervey D, Lehtonen H, Carmo-Fonseca M, Hurt EC. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 1991 Mar;10(3):573–583. [PubMed]
  • Venema J, Tollervey D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1629–1650. [PubMed]
  • Zirwes RF, Kouzmenko AP, Peters JM, Franke WW, Schmidt-Zachmann MS. Topogenesis of a nucleolar protein: determination of molecular segments directing nucleolar association. Mol Biol Cell. 1997 Feb;8(2):231–248. [PMC free article] [PubMed]
  • Steinmetz EJ, Brow DA. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol Cell Biol. 1996 Dec;16(12):6993–7003. [PMC free article] [PubMed]
  • Page BD, Snyder M. CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev. 1992 Aug;6(8):1414–1429. [PubMed]
  • Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. [PubMed]
  • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. [PubMed]
  • Ursic D, Sedbrook JC, Himmel KL, Culbertson MR. The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell. 1994 Oct;5(10):1065–1080. [PMC free article] [PubMed]
  • Ursic D, Culbertson MR. The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol. 1991 May;11(5):2629–2640. [PMC free article] [PubMed]
  • van Tol H, Beier H. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodon. Nucleic Acids Res. 1988 Mar 25;16(5):1951–1966. [PMC free article] [PubMed]
  • England TE, Bruce AG, Uhlenbeck OC. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. [PubMed]
  • Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996 Sep 6;86(5):823–834. [PubMed]
  • Madhani HD, Guthrie C. Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet. 1994;28:1–26. [PubMed]
  • O'Connor JP, Peebles CL. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jan;11(1):425–439. [PMC free article] [PubMed]
  • Balakin AG, Schneider GS, Corbett MS, Ni J, Fournier MJ. SnR31, snR32, and snR33: three novel, non-essential snRNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Nov 25;21(23):5391–5397. [PMC free article] [PubMed]
  • Tollervey D. A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J. 1987 Dec 20;6(13):4169–4175. [PubMed]
  • Weng Y, Czaplinski K, Peltz SW. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol. 1996 Oct;16(10):5477–5490. [PMC free article] [PubMed]
  • Maxwell ES, Fournier MJ. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934. [PubMed]
  • Ganot P, Bortolin ML, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell. 1997 May 30;89(5):799–809. [PubMed]
  • Ni J, Tien AL, Fournier MJ. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell. 1997 May 16;89(4):565–573. [PubMed]
  • Elela SA, Igel H, Ares M., Jr RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell. 1996 Apr 5;85(1):115–124. [PubMed]
  • Mitchell P, Petfalski E, Tollervey D. The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 1996 Feb 15;10(4):502–513. [PubMed]
  • Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996 Jun 28;85(7):1077–1088. [PubMed]
  • Nicoloso M, Qu LH, Michot B, Bachellerie JP. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. J Mol Biol. 1996 Jul 12;260(2):178–195. [PubMed]
  • Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997 May 30;89(5):669–672. [PubMed]
  • Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997 Jun;9(3):337–342. [PubMed]
  • Cavaillé J, Nicoloso M, Bachellerie JP. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 1996 Oct 24;383(6602):732–735. [PubMed]
  • Cavaillé J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie. 1996;78(6):443–456. [PubMed]
  • Chu S, Zengel JM, Lindahl L. A novel protein shared by RNase MRP and RNase P. RNA. 1997 Apr;3(4):382–391. [PubMed]
  • Dichtl B, Tollervey D. Pop3p is essential for the activity of the RNase MRP and RNase P ribonucleoproteins in vivo. EMBO J. 1997 Jan 15;16(2):417–429. [PubMed]
  • Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997 Apr 1;11(7):941–956. [PubMed]
  • Lygerou Z, Mitchell P, Petfalski E, Séraphin B, Tollervey D. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 1994 Jun 15;8(12):1423–1433. [PubMed]
  • Tollervey D. Small nucleolar RNAs guide ribosomal RNA methylation. Science. 1996 Aug 23;273(5278):1056–1057. [PubMed]
  • Allmang C, Henry Y, Morrissey JP, Wood H, Petfalski E, Tollervey D. Processing of the yeast pre-rRNA at sites A(2) and A(3) is linked. RNA. 1996 Jan;2(1):63–73. [PubMed]
  • Potashkin J, Frendewey D. A mutation in a single gene of Schizosaccharomyces pombe affects the expression of several snRNAs and causes defects in RNA processing. EMBO J. 1990 Feb;9(2):525–534. [PubMed]
  • Russell ID, Tollervey D. NOP3 is an essential yeast protein which is required for pre-rRNA processing. J Cell Biol. 1992 Nov;119(4):737–747. [PMC free article] [PubMed]
  • Maden BE. Locations of methyl groups in 28 S rRNA of Xenopus laevis and man. Clustering in the conserved core of molecule. J Mol Biol. 1988 May 20;201(2):289–314. [PubMed]
  • Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell. 1997 Jun 13;89(6):849–858. [PubMed]
  • Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996 Mar 1;15(5):1121–1131. [PubMed]
  • Cecconi F, Mariottini P, Amaldi F. The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Nucleic Acids Res. 1995 Nov 25;23(22):4670–4676. [PMC free article] [PubMed]
  • Kiss T, Bortolin ML, Filipowicz W. Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin. Mol Cell Biol. 1996 Apr;16(4):1391–1400. [PMC free article] [PubMed]
  • Kiss T, Filipowicz W. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 1995 Jun 1;9(11):1411–1424. [PubMed]
  • Mougin A, Grégoire A, Banroques J, Ségault V, Fournier R, Brulé F, Chevrier-Miller M, Branlant C. Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. RNA. 1996 Nov;2(11):1079–1093. [PubMed]
  • Noble SM, Guthrie C. Transcriptional pulse-chase analysis reveals a role for a novel snRNP-associated protein in the manufacture of spliceosomal snRNPs. EMBO J. 1996 Aug 15;15(16):4368–4379. [PubMed]
  • Tycowski KT, Shu MD, Steitz JA. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996 Feb 1;379(6564):464–466. [PubMed]
  • Margossian SP, Li H, Zassenhaus HP, Butow RA. The DExH box protein Suv3p is a component of a yeast mitochondrial 3'-to-5' exoribonuclease that suppresses group I intron toxicity. Cell. 1996 Jan 26;84(2):199–209. [PubMed]
  • Py B, Higgins CF, Krisch HM, Carpousis AJ. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature. 1996 May 9;381(6578):169–172. [PubMed]
  • Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol. 1997 Feb 24;136(4):761–773. [PMC free article] [PubMed]
  • Stevens A, Poole TL. 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5'-exonuclease-1. J Biol Chem. 1995 Jul 7;270(27):16063–16069. [PubMed]
  • Heyer WD, Johnson AW, Reinhart U, Kolodner RD. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol Cell Biol. 1995 May;15(5):2728–2736. [PMC free article] [PubMed]
  • Venema J, Bousquet-Antonelli C, Gelugne JP, Caizergues-Ferrer M, Tollervey D. Rok1p is a putative RNA helicase required for rRNA processing. Mol Cell Biol. 1997 Jun;17(6):3398–3407. [PMC free article] [PubMed]
  • Song Y, Kim S, Kim J. ROK1, a high-copy-number plasmid suppressor of kem1, encodes a putative ATP-dependent RNA helicase in Saccharomyces cerevisiae. Gene. 1995 Dec 1;166(1):151–154. [PubMed]
  • Johnson AW, Kolodner RD. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol Cell Biol. 1995 May;15(5):2719–2727. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press