PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1997 November 15; 25(22): 4557–4561.
PMCID: PMC147074

The yeast 8-oxoguanine DNA glycosylase (Ogg1) contains a DNA deoxyribophosphodiesterase (dRpase) activity.

Abstract

The yeast OGG1 gene was recently cloned and shown to encode a protein that possesses N-glycosylase/AP lyase activities for the repair of oxidatively damaged DNA at sites of 7,8-dihydro-8-oxoguanine (8-oxoguanine). Similar activities have been identified for Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and Drosophila ribosomal protein S3. Both Fpg and S3 also contain a deoxyribophosphodiesterase (dRpase) activity that removes 2-deoxyribose-5-phosphate at an incised 5' apurinic/apyrimidinic (AP) sites via a beta-elimination reaction. Drosophila S3 also has an additional activity that removes trans-4-hydroxy-2-pentenal-5-phosphate at a 3' incised AP site by a Mg2+-dependent hydrolytic mechanism. In view of the substrate similarities between Ogg1, Fpg and S3 at the level of base excision repair, we examined whether Ogg1 also contains dRpase activities. A glutathione S-transferase fusion protein of Ogg1 was purified and subsequently found to efficiently remove sugar-phosphate residues at incised 5' AP sites. Activity was also detected for the Mg2+-dependent removal of trans -4-hydroxy-2-pentenal-5-phosphate at 3' incised AP sites and from intact AP sites. Previous studies have shown that DNA repair proteins that possess AP lyase activity leave an inefficient DNA terminus for subsequent DNA synthesis steps associated with base excision repair. However, the results presented here suggest that in the presence of MgCl2, Ogg1 can efficiently process 8-oxoguanine so as to leave a one nucleotide gap that can be readily filled in by a DNA polymerase, and importantly, does not therefore require additional enzymes to process trans -4-hydroxy-2-pentenal-5-phosphate left at a 3' terminus created by a beta-elimination catalyst.

Full Text

The Full Text of this article is available as a PDF (93K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry. 1990 Jul 31;29(30):7024–7032. [PubMed]
  • Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. [PubMed]
  • Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP. Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res. 1991 May;254(3):281–288. [PubMed]
  • Cabrera M, Nghiem Y, Miller JH. mutM, a second mutator locus in Escherichia coli that generates G.C----T.A transversions. J Bacteriol. 1988 Nov;170(11):5405–5407. [PMC free article] [PubMed]
  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem. 1992 Jan 5;267(1):166–172. [PubMed]
  • Floyd RA. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis. 1990 Sep;11(9):1447–1450. [PubMed]
  • Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. [PubMed]
  • Michaels ML, Pham L, Cruz C, Miller JH. MutM, a protein that prevents G.C----T.A transversions, is formamidopyrimidine-DNA glycosylase. Nucleic Acids Res. 1991 Jul 11;19(13):3629–3632. [PMC free article] [PubMed]
  • Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4690–4694. [PubMed]
  • Bailly V, Verly WG, O'Connor T, Laval J. Mechanism of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli [formamidopyrimidine]DNA glycosylase. Biochem J. 1989 Sep 1;262(2):581–589. [PubMed]
  • Graves RJ, Felzenszwalb I, Laval J, O'Connor TR. Excision of 5'-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J Biol Chem. 1992 Jul 15;267(20):14429–14435. [PubMed]
  • Mosbaugh DW, Linn S. Characterization of the action of Escherichia coli DNA polymerase I at incisions produced by repair endodeoxyribonucleases. J Biol Chem. 1982 Jan 10;257(1):575–583. [PubMed]
  • Yacoub A, Augeri L, Kelley MR, Doetsch PW, Deutsch WA. A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. EMBO J. 1996 May 1;15(9):2306–2312. [PubMed]
  • Sandigursky M, Yacoub A, Kelley MR, Deutsch WA, Franklin WA. The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodiesterase (dRpase) activity. J Biol Chem. 1997 Jul 11;272(28):17480–17484. [PubMed]
  • van der Kemp PA, Thomas D, Barbey R, de Oliveira R, Boiteux S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5197–5202. [PubMed]
  • Nash HM, Bruner SD, Schärer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996 Aug 1;6(8):968–980. [PubMed]
  • Cunningham RP, Saporito SM, Spitzer SG, Weiss B. Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol. 1986 Dec;168(3):1120–1127. [PMC free article] [PubMed]
  • Sandigursky M, Mendez F, Bases RE, Matsumoto T, Franklin WA. Protein-protein interactions between the Escherichia coli single-stranded DNA-binding protein and exonuclease I. Radiat Res. 1996 May;145(5):619–623. [PubMed]
  • Franklin WA, Lindahl T. DNA deoxyribophosphodiesterase. EMBO J. 1988 Nov;7(11):3617–3622. [PubMed]
  • Sandigursky M, Franklin WA. DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease I. Nucleic Acids Res. 1992 Sep 25;20(18):4699–4703. [PMC free article] [PubMed]
  • Bailly V, Verly WG. Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochem J. 1987 Mar 1;242(2):565–572. [PubMed]
  • Warner HR, Demple BF, Deutsch WA, Kane CM, Linn S. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4602–4606. [PubMed]
  • Matsumoto Y, Kim K. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 1995 Aug 4;269(5224):699–702. [PubMed]
  • Sandigursky M, Lalezari I, Franklin WA. Excision of sugar-phosphate products at apurinic/apyrimidinic sites by DNA deoxyribophosphodiesterase of Escherichia coli. Radiat Res. 1992 Sep;131(3):332–337. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press