Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1997 September 1; 25(17): 3379–3388.
PMCID: PMC146926

Homing endonucleases: keeping the house in order.


Homing endonucleases are rare-cutting enzymes encoded by introns and inteins. They have striking structural and functional properties that distinguish them from restriction enzymes. Nomenclature conventions analogous to those for restriction enzymes have been developed for the homing endonucleases. Recent progress in understanding the structure and function of the four families of homing enzymes is reviewed. Of particular interest are the first reported structures of homing endonucleases of the LAGLIDADG family. The exploitation of the homing enzymes in genome analysis and recombination research is also summarized. Finally, the evolution of homing endonucleases is considered, both at the structure-function level and in terms of their persistence in widely divergent biological systems.

Full Text

The Full Text of this article is available as a PDF (330K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Belfort M, Perlman PS. Mechanisms of intron mobility. J Biol Chem. 1995 Dec 22;270(51):30237–30240. [PubMed]
  • Curcio MJ, Belfort M. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA. Cell. 1996 Jan 12;84(1):9–12. [PubMed]
  • Cooper AA, Stevens TH. Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends Biochem Sci. 1995 Sep;20(9):351–356. [PubMed]
  • Aggarwal AK. Structure and function of restriction endonucleases. Curr Opin Struct Biol. 1995 Feb;5(1):11–19. [PubMed]
  • Pingoud A, Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem. 1997 May 15;246(1):1–22. [PubMed]
  • Roberts RJ, Macelis D. REBASE-restriction enzymes and methylases. Nucleic Acids Res. 1997 Jan 1;25(1):248–262. [PMC free article] [PubMed]
  • Lambowitz AM, Belfort M. Introns as mobile genetic elements. Annu Rev Biochem. 1993;62:587–622. [PubMed]
  • Shibata T, Nakagawa K, Morishima N. Multi-site-specific endonucleases and the initiation of homologous genetic recombination in yeast. Adv Biophys. 1995;31:77–91. [PubMed]
  • Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell. 1995 Nov 17;83(4):529–538. [PubMed]
  • Wilson GG. Cloned restriction-modification systems--a review. Gene. 1988 Dec 25;74(1):281–289. [PubMed]
  • Smith HO, Nathans D. Letter: A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J Mol Biol. 1973 Dec 15;81(3):419–423. [PubMed]
  • Dujon B, Belfort M, Butow RA, Jacq C, Lemieux C, Perlman PS, Vogt VM. Mobile introns: definition of terms and recommended nomenclature. Gene. 1989 Oct 15;82(1):115–118. [PubMed]
  • Perler FB, Davis EO, Dean GE, Gimble FS, Jack WE, Neff N, Noren CJ, Thorner J, Belfort M. Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Res. 1994 Apr 11;22(7):1125–1127. [PMC free article] [PubMed]
  • Szczepanek T, Lazowska J. Replacement of two non-adjacent amino acids in the S.cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity. EMBO J. 1996 Jul 15;15(14):3758–3767. [PubMed]
  • Perler FB, Olsen GJ, Adam E. Compilation and analysis of intein sequences. Nucleic Acids Res. 1997 Mar 15;25(6):1087–1093. [PMC free article] [PubMed]
  • Hodges RA, Perler FB, Noren CJ, Jack WE. Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res. 1992 Dec 11;20(23):6153–6157. [PMC free article] [PubMed]
  • Gimble FS, Stephens BW. Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. J Biol Chem. 1995 Mar 17;270(11):5849–5856. [PubMed]
  • Henke RM, Butow RA, Perlman PS. Maturase and endonuclease functions depend on separate conserved domains of the bifunctional protein encoded by the group I intron aI4 alpha of yeast mitochondrial DNA. EMBO J. 1995 Oct 16;14(20):5094–5099. [PubMed]
  • Heath PJ, Stephens KM, Monnat RJ, Jr, Stoddard BL. The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol. 1997 Jun;4(6):468–476. [PubMed]
  • Duan X, Gimble FS, Quiocho FA. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell. 1997 May 16;89(4):555–564. [PubMed]
  • Gimble FS, Wang J. Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing. J Mol Biol. 1996 Oct 25;263(2):163–180. [PubMed]
  • Wende W, Grindl W, Christ F, Pingoud A, Pingoud V. Binding, bending and cleavage of DNA substrates by the homing endonuclease Pl-SceI. Nucleic Acids Res. 1996 Nov 1;24(21):4123–4132. [PMC free article] [PubMed]
  • Perrin A, Buckle M, Dujon B. Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions. EMBO J. 1993 Jul;12(7):2939–2947. [PubMed]
  • Bryk M, Quirk SM, Mueller JE, Loizos N, Lawrence C, Belfort M. The td intron endonuclease I-TevI makes extensive sequence-tolerant contacts across the minor groove of its DNA target. EMBO J. 1993 May;12(5):2141–2149. [PubMed]
  • Mueller JE, Smith D, Bryk M, Belfort M. Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J. 1995 Nov 15;14(22):5724–5735. [PubMed]
  • Bryk M, Belisle M, Mueller JE, Belfort M. Selection of a remote cleavage site by I-tevI, the td intron-encoded endonuclease. J Mol Biol. 1995 Mar 24;247(2):197–210. [PubMed]
  • Derbyshire V, Kowalski JC, Dansereau JT, Hauer CR, Belfort M. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J Mol Biol. 1997 Feb 7;265(5):494–506. [PubMed]
  • Ellison EL, Vogt VM. Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Mol Cell Biol. 1993 Dec;13(12):7531–7539. [PMC free article] [PubMed]
  • Wittmayer PK, Raines RT. Substrate binding and turnover by the highly specific I-PpoI endonuclease. Biochemistry. 1996 Jan 23;35(3):1076–1083. [PubMed]
  • Gorbalenya AE. Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci. 1994 Jul;3(7):1117–1120. [PubMed]
  • Shub DA, Goodrich-Blair H, Eddy SR. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends Biochem Sci. 1994 Oct;19(10):402–404. [PubMed]
  • Eddy SR, Gold L. The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev. 1991 Jun;5(6):1032–1041. [PubMed]
  • Goodrich-Blair H, Shub DA. Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell. 1996 Jan 26;84(2):211–221. [PubMed]
  • Loizos N, Silva GH, Belfort M. Intron-encoded endonuclease I-TevII binds across the minor groove and induces two distinct conformational changes in its DNA substrate. J Mol Biol. 1996 Jan 26;255(3):412–424. [PubMed]
  • Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993 May;12(5):1781–1795. [PubMed]
  • Turmel M, Mercier JP, Côté V, Otis C, Lemieux C. The site-specific DNA endonuclease encoded by a group I intron in the Chlamydomonas pallidostigmatica chloroplast small subunit rRNA gene introduces a single-strand break at low concentrations of Mg2+. Nucleic Acids Res. 1995 Jul 11;23(13):2519–2525. [PMC free article] [PubMed]
  • Halford SE, Goodall AJ. Modes of DNA cleavage by the EcoRV restriction endonuclease. Biochemistry. 1988 Mar 8;27(5):1771–1777. [PubMed]
  • Bell-Pedersen D, Quirk SM, Bryk M, Belfort M. I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7719–7723. [PubMed]
  • Mueller JE, Smith D, Belfort M. Exon coconversion biases accompanying intron homing: battle of the nucleases. Genes Dev. 1996 Sep 1;10(17):2158–2166. [PubMed]
  • Jin Y, Binkowski G, Simon LD, Norris D. Ho endonuclease cleaves MAT DNA in vitro by an inefficient stoichiometric reaction mechanism. J Biol Chem. 1997 Mar 14;272(11):7352–7359. [PubMed]
  • Athanasiadis A, Vlassi M, Kotsifaki D, Tucker PA, Wilson KS, Kokkinidis M. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV. Nat Struct Biol. 1994 Jul;1(7):469–475. [PubMed]
  • Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK. Structure of restriction endonuclease BamHI and its relationship to EcoRI. Nature. 1994 Apr 14;368(6472):660–664. [PubMed]
  • Liu SL, Sanderson KE. Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10303–10308. [PubMed]
  • Toda T, Itaya M. I-CeuI recognition sites in the rrn operons of the Bacillus subtilis 168 chromosome: inherent landmarks for genome analysis. Microbiology. 1995 Aug;141(Pt 8):1937–1945. [PubMed]
  • Bloch CA, Rode CK, Obreque VH, Mahillon J. Purification of Escherichia coli chromosomal segments without cloning. Biochem Biophys Res Commun. 1996 Jun 5;223(1):104–111. [PubMed]
  • Mahillon J, Rode CK, Léonard C, Bloch CA. New ultrarare restriction site-carrying transposons for bacterial genomics. Gene. 1997 Mar 18;187(2):273–279. [PubMed]
  • Jumas-Bilak E, Maugard C, Michaux-Charachon S, Allardet-Servent A, Perrin A, O'Callaghan D, Ramuz M. Study of the organization of the genomes of Escherichia coli, Brucella melitensis and Agrobacterium tumefaciens by insertion of a unique restriction site. Microbiology. 1995 Oct;141(Pt 10):2425–2432. [PubMed]
  • Dalgaard JZ, Banerjee M, Curcio MJ. A novel Ty1-mediated fragmentation method for native and artificial yeast chromosomes reveals that the mouse steel gene is a hotspot for Ty1 integration. Genetics. 1996 Jun;143(2):673–683. [PubMed]
  • Thierry A, Gaillon L, Galibert F, Dujon B. Construction of a complete genomic library of Saccharomyces cerevisiae and physical mapping of chromosome XI at 3.7 kb resolution. Yeast. 1995 Feb;11(2):121–135. [PubMed]
  • Asselbergs FA, Rival S. Creation of a novel, versatile multiple cloning site cut by four rare-cutting homing endonucleases. Biotechniques. 1996 Apr;20(4):558–562. [PubMed]
  • Favre D, Viret JF. Versatile cosmid vectors for facilitated analysis and subcloning of the insert. Gene. 1996 Oct 31;178(1-2):43–49. [PubMed]
  • Jasin M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 1996 Jun;12(6):224–228. [PubMed]
  • Brenneman M, Gimble FS, Wilson JH. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3608–3612. [PubMed]
  • Haber JE. Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet. 1992 Dec;8(12):446–452. [PubMed]
  • Nassif N, Penney J, Pal S, Engels WR, Gloor GB. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. [PMC free article] [PubMed]
  • Gellert M. DNA double-strand breaks and hairpins in V(D)J recombination. Semin Immunol. 1994 Jun;6(3):125–130. [PubMed]
  • Mueller JE, Clyman J, Huang YJ, Parker MM, Belfort M. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 1996 Feb 1;10(3):351–364. [PubMed]
  • George JW, Kreuzer KN. Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication. Genetics. 1996 Aug;143(4):1507–1520. [PubMed]
  • Malkova A, Ivanov EL, Haber JE. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7131–7136. [PubMed]
  • Nelson HH, Sweetser DB, Nickoloff JA. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol Cell Biol. 1996 Jun;16(6):2951–2957. [PMC free article] [PubMed]
  • Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5055–5060. [PubMed]
  • Dürrenberger F, Thompson AJ, Herrin DL, Rochaix JD. Double strand break-induced recombination in Chlamydomonas reinhardtii chloroplasts. Nucleic Acids Res. 1996 Sep 1;24(17):3323–3331. [PMC free article] [PubMed]
  • Liang F, Romanienko PJ, Weaver DT, Jeggo PA, Jasin M. Chromosomal double-strand break repair in Ku80-deficient cells. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8929–8933. [PubMed]
  • Zimmerly S, Guo H, Perlman PS, Lambowitz AM. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. 1995 Aug 25;82(4):545–554. [PubMed]
  • Yang J, Zimmerly S, Perlman PS, Lambowitz AM. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature. 1996 May 23;381(6580):332–335. [PubMed]
  • Parker MM, Court DA, Preiter K, Belfort M. Homology requirements for double-strand break-mediated recombination in a phage lambda-td intron model system. Genetics. 1996 Jul;143(3):1057–1068. [PubMed]
  • Moore JK, Haber JE. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature. 1996 Oct 17;383(6601):644–646. [PubMed]
  • Teng SC, Kim B, Gabriel A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature. 1996 Oct 17;383(6601):641–644. [PubMed]
  • Lykke-Andersen J, Garrett RA, Kjems J. Protein footprinting approach to mapping DNA binding sites of two archaeal homing enzymes: evidence for a two-domain protein structure. Nucleic Acids Res. 1996 Oct 15;24(20):3982–3989. [PMC free article] [PubMed]
  • Aagaard C, Dalgaard JZ, Garrett RA. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12285–12289. [PubMed]
  • Naito T, Kusano K, Kobayashi I. Selfish behavior of restriction-modification systems. Science. 1995 Feb 10;267(5199):897–899. [PubMed]
  • Waring RB, Davies RW, Scazzocchio C, Brown TA. Internal structure of a mitochondrial intron of Aspergillus nidulans. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6332–6336. [PubMed]
  • Gauthier A, Turmel M, Lemieux C. A group I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron. Curr Genet. 1991 Jan;19(1):43–47. [PubMed]
  • Marshall P, Lemieux C. Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. Gene. 1991 Aug 15;104(2):241–245. [PubMed]
  • Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C. Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol. 1991 Mar 20;218(2):293–311. [PubMed]
  • Côté V, Mercier JP, Lemieux C, Turmel M. The single group-I intron in the chloroplast rrnL gene of Chlamydomonas humicola encodes a site-specific DNA endonuclease (I-ChuI). Gene. 1993 Jul 15;129(1):69–76. [PubMed]
  • Turmel M, Côté V, Otis C, Mercier JP, Gray MW, Lonergan KM, Lemieux C. Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion). Mol Biol Evol. 1995 Jul;12(4):533–545. [PubMed]
  • Rochaix JD, Rahire M, Michel F. The chloroplast ribosomal intron of Chlamydomonas reinhardii codes for a polypeptide related to mitochondrial maturases. Nucleic Acids Res. 1985 Feb 11;13(3):975–984. [PMC free article] [PubMed]
  • Colleaux L, Michel-Wolwertz MR, Matagne RF, Dujon B. The apocytochrome b gene of Chlamydomonas smithii contains a mobile intron related to both Saccharomyces and Neurospora introns. Mol Gen Genet. 1990 Sep;223(2):288–296. [PubMed]
  • Ma DP, King YT, Kim Y, Luckett WS., Jr The group I intron of apocytochrome b gene from Chlamydomonas smithii encodes a site-specific endonuclease. Plant Mol Biol. 1992 Mar;18(5):1001–1004. [PubMed]
  • Johansen S, Embley TM, Willassen NP. A family of nuclear homing endonucleases. Nucleic Acids Res. 1993 Sep 11;21(18):4405–4405. [PMC free article] [PubMed]
  • Dalgaard JZ, Garrett RA, Belfort M. A site-specific endonuclease encoded by a typical archaeal intron. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5414–5417. [PubMed]
  • Goodrich-Blair H, Scarlato V, Gott JM, Xu MQ, Shub DA. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell. 1990 Oct 19;63(2):417–424. [PubMed]
  • Goodrich-Blair H, Shub DA. The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames. Nucleic Acids Res. 1994 Sep 11;22(18):3715–3721. [PMC free article] [PubMed]
  • Mills DA, McKay LL, Dunny GM. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol. 1996 Jun;178(12):3531–3538. [PMC free article] [PubMed]
  • Embley TM, Dyal P, Kilvington S. A group I intron in the small subunit ribosomal RNA gene from Naegleria andersoni ssp. andersoni strain PPMFB-6. Nucleic Acids Res. 1992 Dec 11;20(23):6411–6411. [PMC free article] [PubMed]
  • Lykke-Andersen J, Thi-Ngoc HP, Garrett RA. DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids Res. 1994 Nov 11;22(22):4583–4590. [PMC free article] [PubMed]
  • Muscarella DE, Ellison EL, Ruoff BM, Vogt VM. Characterization of I-Ppo, an intron-encoded endonuclease that mediates homing of a group I intron in the ribosomal DNA of Physarum polycephalum. Mol Cell Biol. 1990 Jul;10(7):3386–3396. [PMC free article] [PubMed]
  • Muscarella DE, Vogt VM. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell. 1989 Feb 10;56(3):443–454. [PubMed]
  • Lazowska J, Szczepanek T, Macadre C, Dokova M. Two homologous mitochondrial introns from closely related Saccharomyces species differ by only a few amino acid replacements in their Open Reading Frames: one is mobile, the other is not. C R Acad Sci III. 1992;315(2):37–41. [PubMed]
  • Dujon B. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci. Cell. 1980 May;20(1):185–197. [PubMed]
  • Colleaux L, d'Auriol L, Betermier M, Cottarel G, Jacquier A, Galibert F, Dujon B. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell. 1986 Feb 28;44(4):521–533. [PubMed]
  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase. J Biol Chem. 1980 Dec 25;255(24):11927–11941. [PubMed]
  • Hanson DK, Lamb MR, Mahler HR, Perlman PS. Evidence for translated intervening sequences in the mitochondrial genome of Saccharomyces cerevisiae. J Biol Chem. 1982 Mar 25;257(6):3218–3224. [PubMed]
  • Sargueil B, Delahodde A, Hatat D, Tian GL, Lazowska J, Jacq C. A new specific DNA endonuclease activity in yeast mitochondria. Mol Gen Genet. 1991 Feb;225(2):340–341. [PubMed]
  • Moran JV, Wernette CM, Mecklenburg KL, Butow RA, Perlman PS. Intron 5 alpha of the COXI gene of yeast mitochondrial DNA is a mobile group I intron. Nucleic Acids Res. 1992 Aug 11;20(15):4069–4076. [PMC free article] [PubMed]
  • Séraphin B, Faye G, Hatat D, Jacq C. The yeast mitochondrial intron aI5 alpha: associated endonuclease activity and in vivo mobility. Gene. 1992 Apr 1;113(1):1–8. [PubMed]
  • Chu FK, Maley G, Pedersen-Lane J, Wang AM, Maley F. Characterization of the restriction site of a prokaryotic intron-encoded endonuclease. Proc Natl Acad Sci U S A. 1990 May;87(9):3574–3578. [PubMed]
  • Bell-Pedersen D, Quirk S, Clyman J, Belfort M. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res. 1990 Jul 11;18(13):3763–3770. [PMC free article] [PubMed]
  • Xu MQ, Southworth MW, Mersha FB, Hornstra LJ, Perler FB. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell. 1993 Dec 31;75(7):1371–1377. [PubMed]
  • Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed]
  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. [PubMed]
  • Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK, et al. Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5577–5581. [PubMed]
  • Watabe H, Shibata T, Ando T. Site-specific endo-deoxyribonucleases in eukaryotes: endonucleases of yeasts, Saccharomyces and Pichia. J Biochem. 1981 Dec;90(6):1623–1632. [PubMed]
  • Watabe H, Iino T, Kaneko T, Shibata T, Ando T. A new class of site-specific endodeoxyribonucleases. Endo.Sce I isolated from a eukaryote, Saccharomyces cerevisiae. J Biol Chem. 1983 Apr 25;258(8):4663–4665. [PubMed]
  • Kostriken R, Strathern JN, Klar AJ, Hicks JB, Heffron F. A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell. 1983 Nov;35(1):167–174. [PubMed]
  • Sharma M, Ellis RL, Hinton DM. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6658–6662. [PubMed]
  • Turmel M, Gutell RR, Mercier JP, Otis C, Lemieux C. Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites. J Mol Biol. 1993 Jul 20;232(2):446–467. [PubMed]
  • Dürrenberger F, Rochaix JD. Characterization of the cleavage site and the recognition sequence of the I-CreI DNA endonuclease encoded by the chloroplast ribosomal intron of Chlamydomonas reinhardtii. Mol Gen Genet. 1993 Jan;236(2-3):409–414. [PubMed]
  • Thompson AJ, Yuan X, Kudlicki W, Herrin DL. Cleavage and recognition pattern of a double-strand-specific endonuclease (I-creI) encoded by the chloroplast 23S rRNA intron of Chlamydomonas reinhardtii. Gene. 1992 Oct 1;119(2):247–251. [PubMed]
  • Allet B, Rochaix JD. Structure analysis at the ends of the intervening DNA sequences in the chloroplast 23S ribosomal genes of C. reinhardii. Cell. 1979 Sep;18(1):55–60. [PubMed]
  • Shearman C, Godon JJ, Gasson M. Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol Microbiol. 1996 Jul;21(1):45–53. [PubMed]
  • Dalgaard JZ, Garrett RA. Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene. 1992 Nov 2;121(1):103–110. [PubMed]
  • Colleaux L, D'Auriol L, Galibert F, Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6022–6026. [PubMed]
  • Delahodde A, Goguel V, Becam AM, Creusot F, Perea J, Banroques J, Jacq C. Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell. 1989 Feb 10;56(3):431–441. [PubMed]
  • Perea J, Desdouets C, Schapira M, Jacq C. I-Sce III: a novel group I intron-encoded endonuclease from the yeast mitochondria. Nucleic Acids Res. 1993 Jan 25;21(2):358–358. [PMC free article] [PubMed]
  • Bell-Pedersen D, Quirk SM, Aubrey M, Belfort M. A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4. Gene. 1989 Oct 15;82(1):119–126. [PubMed]
  • Shub DA, Gott JM, Xu MQ, Lang BF, Michel F, Tomaschewski J, Pedersen-Lane J, Belfort M. Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1151–1155. [PubMed]
  • Gimble FS, Thorner J. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature. 1992 May 28;357(6376):301–306. [PubMed]
  • Sharma M, Hinton DM. Purification and characterization of the SegA protein of bacteriophage T4, an endonuclease related to proteins encoded by group I introns. J Bacteriol. 1994 Nov;176(21):6439–6448. [PMC free article] [PubMed]
  • Kaliman AV, Khasanova MA, Kryukov VM, Tanyashin VI, Bayev AA. The nucleotide sequence of the region of bacteriophage T4 inh(lip)-hoc genes. Nucleic Acids Res. 1990 Jul 25;18(14):4277–4277. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press