PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1997 August 15; 25(16): 3187–3195.
PMCID: PMC146874

Comparative sequence analysis of ribonucleases HII, III, II PH and D.

Abstract

Escherichia coli ribonucleases (RNases) HII, III, II, PH and D have been used to characterise new and known viral, bacterial, archaeal and eucaryotic sequences similar to these endo- (HII and III) and exoribonucleases (II, PH and D). Statistical models, hidden Markov models (HMMs), were created for the RNase HII, III, II and PH and D families as well as a double-stranded RNA binding domain present in RNase III. Results suggest that the RNase D family, which includes Werner syndrome protein and the 100 kDa antigenic component of the human polymyositis scleroderma (PMSCL) autoantigen, is a 3'-->5' exoribonuclease structurally and functionally related to the 3'-->5' exodeoxyribonuclease domain of DNA polymerases. Polynucleotide phosphorylases and the RNase PH family, which includes the 75 kDa PMSCL autoantigen, possess a common domain suggesting similar structures and mechanisms of action for these 3'-->5' phosphorolytic enzymes. Examination of HMM-generated multiple sequences alignments for each family suggest amino acids that may be important for their structure, substrate binding and/or catalysis.

Full Text

The Full Text of this article is available as a PDF (682K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Schmid HP, Pouch MN, Petit F, Dadet MH, Badaoui S, Boissonnet G, Buri J, Norris V, Briand Y. Relationships between proteasomes and RNA. Mol Biol Rep. 1995;21(1):43–47. [PubMed]
  • Deutscher MP. Ribonuclease multiplicity, diversity, and complexity. J Biol Chem. 1993 Jun 25;268(18):13011–13014. [PubMed]
  • Apirion D, Miczak A. RNA processing in prokaryotic cells. Bioessays. 1993 Feb;15(2):113–120. [PubMed]
  • Rost B. TOPITS: threading one-dimensional predictions into three-dimensional structures. Proc Int Conf Intell Syst Mol Biol. 1995;3:314–321. [PubMed]
  • Golz JF, Clarke AE, Newbigin E. Self-incompatibility in flowering plants. Curr Opin Genet Dev. 1995 Oct;5(5):640–645. [PubMed]
  • Kao TH, McCubbin AG. How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12059–12065. [PubMed]
  • Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol. 1994 Feb 4;235(5):1501–1531. [PubMed]
  • Baldi P, Chauvin Y, Hunkapiller T, McClure MA. Hidden Markov models of biological primary sequence information. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1059–1063. [PubMed]
  • Eddy SR. Hidden Markov models. Curr Opin Struct Biol. 1996 Jun;6(3):361–365. [PubMed]
  • Fujiwara Y, Asogawa M, Konagaya A. Stochastic motif extraction using hidden Markov model. Proc Int Conf Intell Syst Mol Biol. 1994;2:121–129. [PubMed]
  • Li Z, Deutscher MP. The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J Biol Chem. 1994 Feb 25;269(8):6064–6071. [PubMed]
  • Reuven NB, Deutscher MP. Multiple exoribonucleases are required for the 3' processing of Escherichia coli tRNA precursors in vivo. FASEB J. 1993 Jan;7(1):143–148. [PubMed]
  • Tomasiewicz HG, McHenry CS. Sequence analysis of the Escherichia coli dnaE gene. J Bacteriol. 1987 Dec;169(12):5735–5744. [PMC free article] [PubMed]
  • Itaya M. Isolation and characterization of a second RNase H (RNase HII) of Escherichia coli K-12 encoded by the rnhB gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8587–8591. [PubMed]
  • Elela SA, Igel H, Ares M., Jr RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell. 1996 Apr 5;85(1):115–124. [PubMed]
  • Jensen KF, Andersen JT, Poulsen P. Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli. J Biol Chem. 1992 Aug 25;267(24):17147–17152. [PubMed]
  • Kelly KO, Deutscher MP. Characterization of Escherichia coli RNase PH. J Biol Chem. 1992 Aug 25;267(24):17153–17158. [PubMed]
  • Coburn GA, Mackie GA. Differential sensitivities of portions of the mRNA for ribosomal protein S20 to 3'-exonucleases dependent on oligoadenylation and RNA secondary structure. J Biol Chem. 1996 Jun 28;271(26):15776–15781. [PubMed]
  • Zhang JR, Deutscher MP. Transfer RNA is a substrate for RNase D in vivo. J Biol Chem. 1988 Dec 5;263(34):17909–17912. [PubMed]
  • Wang JY, Qiu L, Wu ED, Drlica K. RNases involved in ribozyme degradation in Escherichia coli. J Bacteriol. 1996 Mar;178(6):1640–1645. [PMC free article] [PubMed]
  • Pepe CM, Maslesa-Galić S, Simons RW. Decay of the IS10 antisense RNA by 3' exoribonucleases: evidence that RNase II stabilizes RNA-OUT against PNPase attack. Mol Microbiol. 1994 Sep;13(6):1133–1142. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Hughey R, Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci. 1996 Apr;12(2):95–107. [PubMed]
  • Brown M, Hughey R, Krogh A, Mian IS, Sjölander K, Haussler D. Using Dirichlet mixture priors to derive hidden Markov models for protein families. Proc Int Conf Intell Syst Mol Biol. 1993;1:47–55. [PubMed]
  • Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haussler D. Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Comput Appl Biosci. 1996 Aug;12(4):327–345. [PubMed]
  • Altschul SF. Amino acid substitution matrices from an information theoretic perspective. J Mol Biol. 1991 Jun 5;219(3):555–565. [PubMed]
  • Barrett C, Hughey R, Karplus K. Scoring hidden Markov models. Comput Appl Biosci. 1997 Apr;13(2):191–199. [PubMed]
  • Barton GJ. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. [PubMed]
  • Rotondo G, Gillespie M, Frendewey D. Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease. Mol Gen Genet. 1995 Jun 25;247(6):698–708. [PubMed]
  • Kutish GF, Li Y, Lu Z, Furuta M, Rock DL, Van Etten JL. Analysis of 76 kb of the chlorella virus PBCV-1 330-kb genome: map positions 182 to 258. Virology. 1996 Sep 15;223(2):303–317. [PubMed]
  • St Johnston D, Brown NH, Gall JG, Jantsch M. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10979–10983. [PubMed]
  • Gatignol A, Buckler C, Jeang KT. Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila staufen. Mol Cell Biol. 1993 Apr;13(4):2193–2202. [PMC free article] [PubMed]
  • Zilhão R, Camelo L, Arraiano CM. DNA sequencing and expression of the gene rnb encoding Escherichia coli ribonuclease II. Mol Microbiol. 1993 Apr;8(1):43–51. [PubMed]
  • Tobe T, Sasakawa C, Okada N, Honma Y, Yoshikawa M. vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol. 1992 Oct;174(20):6359–6367. [PMC free article] [PubMed]
  • Kinoshita N, Goebl M, Yanagida M. The fission yeast dis3+ gene encodes a 110-kDa essential protein implicated in mitotic control. Mol Cell Biol. 1991 Dec;11(12):5839–5847. [PMC free article] [PubMed]
  • Sutton A, Immanuel D, Arndt KT. The SIT4 protein phosphatase functions in late G1 for progression into S phase. Mol Cell Biol. 1991 Apr;11(4):2133–2148. [PMC free article] [PubMed]
  • Wilson RB, Brenner AA, White TB, Engler MJ, Gaughran JP, Tatchell K. The Saccharomyces cerevisiae SRK1 gene, a suppressor of bcy1 and ins1, may be involved in protein phosphatase function. Mol Cell Biol. 1991 Jun;11(6):3369–3373. [PMC free article] [PubMed]
  • Turcq B, Dobinson KF, Serizawa N, Lambowitz AM. A protein required for RNA processing and splicing in Neurospora mitochondria is related to gene products involved in cell cycle protein phosphatase functions. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1676–1680. [PubMed]
  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. [PubMed]
  • Davidov Y, Rahat A, Flechner I, Pines O. Characterization of the rnc-97 mutation of RNAaseIII: a glycine to glutamate substitution increases the requirement for magnesium ions. J Gen Microbiol. 1993 Apr;139(4):717–724. [PubMed]
  • Li H, Nicholson AW. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J. 1996 Mar 15;15(6):1421–1433. [PubMed]
  • Hofmann K, Bucher P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem Sci. 1995 Sep;20(9):347–349. [PubMed]
  • Stone JM, Collinge MA, Smith RD, Horn MA, Walker JC. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science. 1994 Nov 4;266(5186):793–795. [PubMed]
  • Navas TA, Zhou Z, Elledge SJ. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell. 1995 Jan 13;80(1):29–39. [PubMed]
  • Xu F, Cohen SN. RNA degradation in Escherichia coli regulated by 3' adenylation and 5' phosphorylation. Nature. 1995 Mar 9;374(6518):180–183. [PubMed]
  • Py B, Causton H, Mudd EA, Higgins CF. A protein complex mediating mRNA degradation in Escherichia coli. Mol Microbiol. 1994 Nov;14(4):717–729. [PubMed]
  • Plotz PH, Rider LG, Targoff IN, Raben N, O'Hanlon TP, Miller FW. NIH conference. Myositis: immunologic contributions to understanding cause, pathogenesis, and therapy. Ann Intern Med. 1995 May 1;122(9):715–724. [PubMed]
  • Epstein CJ, Motulsky AG. Werner syndrome: entering the helicase era. Bioessays. 1996 Dec;18(12):1025–1027. [PubMed]
  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, et al. Positional cloning of the Werner's syndrome gene. Science. 1996 Apr 12;272(5259):258–262. [PubMed]
  • Bernad A, Blanco L, Lázaro JM, Martín G, Salas M. A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell. 1989 Oct 6;59(1):219–228. [PubMed]
  • Wang J, Yu P, Lin TC, Konigsberg WH, Steitz TA. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Biochemistry. 1996 Jun 25;35(25):8110–8119. [PubMed]
  • Joyce CM, Steitz TA. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777–822. [PubMed]
  • Rotondo G, Frendewey D. Purification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe. Nucleic Acids Res. 1996 Jun 15;24(12):2377–2386. [PMC free article] [PubMed]
  • Katayanagi K, Okumura M, Morikawa K. Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 A resolution: proof for a single Mg(2+)-binding site. Proteins. 1993 Dec;17(4):337–346. [PubMed]
  • Doolittle RF, Feng DF, Johnson MS, McClure MA. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. [PubMed]
  • Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Nakamura H, Ikehara M, Matsuzaki T, Morikawa K. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. J Mol Biol. 1992 Feb 20;223(4):1029–1052. [PubMed]
  • Kharrat A, Macias MJ, Gibson TJ, Nilges M, Pastore A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 1995 Jul 17;14(14):3572–3584. [PubMed]
  • Bycroft M, Grünert S, Murzin AG, Proctor M, St Johnston D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 1995 Jul 17;14(14):3563–3571. [PubMed]
  • Jones GH, Bibb MJ. Guanosine pentaphosphate synthetase from Streptomyces antibioticus is also a polynucleotide phosphorylase. J Bacteriol. 1996 Jul;178(14):4281–4288. [PMC free article] [PubMed]
  • Derbyshire V, Freemont PS, Sanderson MR, Beese L, Friedman JM, Joyce CM, Steitz TA. Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science. 1988 Apr 8;240(4849):199–201. [PubMed]
  • Beese LS, Steitz TA. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. [PubMed]
  • Beese LS, Derbyshire V, Steitz TA. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16;260(5106):352–355. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press