PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1997 July 15; 25(14): 2694–2701.
PMCID: PMC146816

Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study.

Abstract

Cell-free yeast extract has been successfully used to catalyze the enzymatic formation of 11 out of the 14 naturally occurring modified nucleotides in yeast tRNAPhe(anticodon GAA). They are m2G10, D17, m22G26, Cm32, Gm34,psi39, m5C40, m7G46, m5C49, T54 andpsi55. Only D16, Y37 and m1A58 were not formed under in vitro conditions. However, m1G37was quantitatively produced instead of Y37. The naturally occurring intron was absolutely required for m5C40formation while it hindered completely the enzymatic formation of Cm32, Gm34and m1G37. Enzymatic formation of m22G26,psi39, m7G46, m5C49, T54 andpsi55were not or only slightly affected by the presence of the intron. These results allow us to classify the different tRNA modification enzymes into three groups: intron insensitive, intron dependent, and those requiring the absence of the intron. The fact that truncated tRNAPheconsisting of the anticodon stem and loop prolonged with the 19 nucleotide long intron is a substrate for tRNA: cytosine-40 methylase demonstrates that the enzyme is not only strictly intron dependent, but also does not require fully structured tRNA.

Full Text

The Full Text of this article is available as a PDF (306K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Martin NC, Hopper AK. How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie. 1994;76(12):1161–1167. [PubMed]
  • Melton DA, De Robertis EM, Cortese R. Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature. 1980 Mar 13;284(5752):143–148. [PubMed]
  • Nishikura K, De Robertis EM. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol. 1981 Jan 15;145(2):405–420. [PubMed]
  • Stange N, Beier H. A cell-free plant extract for accurate pre-tRNA processing, splicing and modification. EMBO J. 1987 Sep;6(9):2811–2818. [PubMed]
  • Johnson PF, Abelson J. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature. 1983 Apr 21;302(5910):681–687. [PubMed]
  • Choffat Y, Suter B, Behra R, Kubli E. Pseudouridine modification in the tRNA(Tyr) anticodon is dependent on the presence, but independent of the size and sequence, of the intron in eucaryotic tRNA(Tyr) genes. Mol Cell Biol. 1988 Aug;8(8):3332–3337. [PMC free article] [PubMed]
  • van Tol H, Beier H. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodon. Nucleic Acids Res. 1988 Mar 25;16(5):1951–1966. [PMC free article] [PubMed]
  • Drabkin HJ. Introduction of an intervening sequence into a human serine suppressor tRNA gene: effects on gene expression in vitro and in vivo. Nucleic Acids Res. 1988 Dec 23;16(24):11591–11606. [PMC free article] [PubMed]
  • Szweykowska-Kulinska Z, Krajewski J, Wypijewski K. Mutations of Arabidopsis thaliana pre-tRNA(Tyr) affecting pseudouridylation of U35. Biochim Biophys Acta. 1995 Oct 17;1264(1):87–92. [PubMed]
  • Szweykowska-Kulinska Z, Senger B, Keith G, Fasiolo F, Grosjean H. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). EMBO J. 1994 Oct 3;13(19):4636–4644. [PubMed]
  • Strobel MC, Abelson J. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo. Mol Cell Biol. 1986 Jul;6(7):2663–2673. [PMC free article] [PubMed]
  • De Robertis EM, Olson MV. Transcription and processing of cloned yeast tyrosine tRNA genes microinjected into frog oocytes. Nature. 1979 Mar 8;278(5700):137–143. [PubMed]
  • Etcheverry T, Colby D, Guthrie C. A precursor to a minor species of yeast tRNASer contains an intervening sequence. Cell. 1979 Sep;18(1):11–26. [PubMed]
  • Nishikura K, Kurjan J, Hall BD, De Robertis EM. Genetic analysis of the processing of a spliced tRNA. EMBO J. 1982;1(2):263–268. [PubMed]
  • Masson JM, Meuris P, Grunstein M, Abelson J, Miller JH. Expression of a set of synthetic suppressor tRNA(Phe) genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6815–6819. [PubMed]
  • Grosjean H, Droogmans L, Giégé R, Uhlenbeck OC. Guanosine modifications in runoff transcripts of synthetic transfer RNA-Phe genes microinjected into Xenopus oocytes. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):267–273. [PubMed]
  • Grosjean H, Szweykowska-Kulinska Z, Motorin Y, Fasiolo F, Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie. 1997 May;79(5):293–302. [PubMed]
  • Steinberg S, Cedergren R. A correlation between N2-dimethylguanosine presence and alternate tRNA conformers. RNA. 1995 Nov;1(9):886–891. [PubMed]
  • Grosjean H, Edqvist J, Stråby KB, Giegé R. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol. 1996 Jan 12;255(1):67–85. [PubMed]
  • Limbach PA, Crain PF, McCloskey JA. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994 Jun 25;22(12):2183–2196. [PMC free article] [PubMed]
  • Sprinzl M, Steegborn C, Hübel F, Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1996 Jan 1;24(1):68–72. [PMC free article] [PubMed]
  • Valenzuela P, Venegas A, Weinberg F, Bishop R, Rutter WJ. Structure of yeast phenylalanine-tRNA genes: an intervening DNA segment within the region coding for the tRNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):190–194. [PubMed]
  • Swerdlow H, Guthrie C. Structure of intron-containing tRNA precursors. Analysis of solution conformation using chemical and enzymatic probes. J Biol Chem. 1984 Apr 25;259(8):5197–5207. [PubMed]
  • Ogden RC, Lee MC, Knapp G. Transfer RNA splicing in Saccharomyces cerevisiae: defining the substrates. Nucleic Acids Res. 1984 Dec 21;12(24):9367–9382. [PMC free article] [PubMed]
  • Lee MC, Knapp G. Transfer RNA splicing in Saccharomyces cerevisiae. Secondary and tertiary structures of the substrates. J Biol Chem. 1985 Mar 10;260(5):3108–3115. [PubMed]
  • Hall KB, Sampson JR. Structural investigation of the in vitro transcript of the yeast tRNA(phe) precursor by NMR and nuclease mapping. Nucleic Acids Res. 1990 Dec 11;18(23):7041–7047. [PMC free article] [PubMed]
  • Reyes VM, Abelson JN. In vitro synthesis of end-mature, intron-containing transfer RNAs. Methods Enzymol. 1989;180:63–69. [PubMed]
  • Sampson JR, Uhlenbeck OC. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. [PubMed]
  • Silberklang M, Gillum AM, RajBhandary UL. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. [PubMed]
  • Peebles CL, Gegenheimer P, Abelson J. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell. 1983 Feb;32(2):525–536. [PubMed]
  • Laski FA, Fire AZ, RajBhandary UL, Sharp PA. Characterization of tRNA precursor splicing in mammalian extracts. J Biol Chem. 1983 Oct 10;258(19):11974–11980. [PubMed]
  • Droogmans L, Grosjean H. Enzymatic conversion of guanosine 3' adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J. 1987 Feb;6(2):477–483. [PubMed]
  • Vary CP, Vournakis JN. RNA structure analysis using T2 ribonuclease: detection of pH and metal ion induced conformational changes in yeast tRNAPhe. Nucleic Acids Res. 1984 Sep 11;12(17):6763–6778. [PMC free article] [PubMed]
  • Malathi R, Yathindra N. Tertiary structure of tRNAPhe. A possible correlation between the structural functional unit of this tRNA and its exonic sequence. Biochem J. 1984 Apr 1;219(1):341–344. [PubMed]
  • Romby P, Moras D, Dumas P, Ebel JP, Giegé R. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. J Mol Biol. 1987 May 5;195(1):193–204. [PubMed]
  • Michałowski D, Wrzesinski J, Ciesiołka J, Krzyzosiak WJ. Effect of modified nucleotides on structure of yeast tRNA(Phe). Comparative studies by metal ion-induced hydrolysis and nuclease mapping. Biochimie. 1996;78(2):131–138. [PubMed]
  • Roy S, Redfield AG. Nuclear Overhauser effect study and assignment of D stem and reverse-Hoogsteen base pair proton resonances in yeast tRNAAsp. Nucleic Acids Res. 1981 Dec 21;9(24):7073–7083. [PMC free article] [PubMed]
  • Clore GM, Gronenborn AM, Piper EA, McLaughlin LW, Graeser E, van Boom JH. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Biochem J. 1984 Aug 1;221(3):737–751. [PubMed]
  • Hall KB, Sampson JR, Uhlenbeck OC, Redfield AG. Structure of an unmodified tRNA molecule. Biochemistry. 1989 Jul 11;28(14):5794–5801. [PubMed]
  • Westhof E, Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986 Aug 26;25(17):4868–4878. [PubMed]
  • Simos G, Tekotte H, Grosjean H, Segref A, Sharma K, Tollervey D, Hurt EC. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 1996 May 1;15(9):2270–2284. [PubMed]
  • Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993 Dec 31;75(7):1361–1370. [PubMed]
  • Egebjerg J, Kukekov V, Heinemann SF. Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10270–10274. [PubMed]
  • Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996 Jun 28;85(7):1077–1088. [PubMed]
  • Nicoloso M, Qu LH, Michot B, Bachellerie JP. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. J Mol Biol. 1996 Jul 12;260(2):178–195. [PubMed]
  • Mazabraud A. The nucleotide sequence of phenylalanine tRNA of Xenopus laevis. Biochimie. 1982 Oct;64(10):955–960. [PubMed]
  • McCutchan T, Silverman S, Kohli J, Söll D. Nucleotide sequence of phenylalanine transfer RNA from Schizosaccharomyces pombe: implications for transfer RNA recognition by yeast phenylalanyl-tRNA synthetase. Biochemistry. 1978 May 2;17(9):1622–1628. [PubMed]
  • Chen Y, Sierzputowska-Gracz H, Guenther R, Everett K, Agris PF. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA. Biochemistry. 1993 Sep 28;32(38):10249–10253. [PubMed]
  • Dao V, Guenther R, Malkiewicz A, Nawrot B, Sochacka E, Kraszewski A, Jankowska J, Everett K, Agris PF. Ribosome binding of DNA analogs of tRNA requires base modifications and supports the "extended anticodon". Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2125–2129. [PubMed]
  • Agris PF. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 1996;53:79–129. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press